Εθνικό Μετσωβιο Πολυτεχνείο
Σχολή Χημίκων Μηχανικών
Τομέας Σύνθεσης και Ανάπτυξης Βιομηχανικών Διαδικασιών
Σχετικό Μαθήματα: Τεχνολογία Πετρελαίου & Φυσικού Αερίου

Διπλωματική Εργασία

Προσρόφηση CO2 με χρήση τροποποιημένων αργιλοφωσφορικών προσροφητικών

Παπαγεωργίου Ανδρέας

Επιβλέπων Μέλος ΔΕΠ:
Δρ. Δημήτριος Καρώνης
Αν. Καθηγητής Ε.Μ.Π

Ιούνιος 2017
Ευχαριστίες

Θα ήθελα να ευχαριστήσω όλους αυτούς που με βοήθησαν μέσα σε αυτό μου το ταξίδι της γνώσης και χωρίς τη συνδρομή των οποίων δεν θα ήταν δυνατό να συγγραφεί η παρούσα εργασία.

Αρχικά, θα ήθελα να αναφέρω τον επιβλέποντα μου, από το Εθνικό Μετσόβιο Πολυτεχνείο, τον Αναπληρωτή Καθηγητή κ. Δημήτριο Καρώνη ο οποίος μου έδειξε το δρόμο, με καθοδήγησε αλλά κυρίως με εμπιστεύτηκε και με στήριξε. Στη συνέχεια, θα ήθελα να εκφράσω την αμέριστη ευγνωμοσύνη μου στον επιβλέποντα μου από το Petroleum Institute, τον Επίκουρο Καθηγητή κ. Γεώργιο Καρανικολό, ο οποίος μου έδωσε την ευκαιρία να δοκιμάσω και να δοκιμαστώ εκτός της Ελλάδας. Οι συμβουλές του, ο προγραμματισμός και το συνεχές ενδιαφέρον του διαδραμάτισαν καταλυτικό ρόλο για τη συγκεκριμένη διπλωματική.

Ακόμα, θα ήθελα να ευχαριστήσω το Petroleum Institute αλλά και το προσωπικό του που με ενέταξε στο δυναμικό του από την πρώτη στιγμή και μου παρέχει όποιο διαθέσιμο μέσο για τα πειράματά μου. Ιδιαίτερα θα ήθελα να ευχαριστήσω τον Δρ. Suresh Kuppireddy για τη συμβολή του στα πειράματα της ρόφησης, την Δρ. Γεωργία Μπασινά για την πολύτιμη βοήθεια που μου προσέφερε εντός του εργαστηρίου αλλά και τον Fadi Zeyad Nawaf Dawaymeh για τις συμβουλές του στην πειραματική διαδικασία. Στον Θωμά Καραγιάννη οφείλω πολλά για την στήριξή και τη βοήθεια που μου παρέχει σε όλο το διάστημα της εργασίας.

Τέλος, δε θα μπορούσα να παραλείψω την οικογένεια μου η οποία με στηρίζει, πιστεύει σε μένα και με ωθεί συνεχώς να κυνηγάω τα όνειρα μου.
Πίνακας Περιεχομένων
Ευχαριστίες .. 2
Κατάλογος Εικόνων ... 5
Κατάλογος Πινάκων ... 6
Κατάλογος Διαγραμμάτων ... 6
Περίληψη ... 8
Abstract .. 9
Θεωρητικό Μέρος ... 10
Κεφάλαιο 1ο – Πορώδη υλικά .. 10
 1.1 Ποιοτική περιγραφή πορωδών υλικών 10
 1.2 Μεθοδολογίες σχηματισμού πορωδών υλικών 11
 1.3 Ορισμός πορώδους .. 12
 1.4 Κατηγοριοποίηση πορωδών υλικών με βάση το μέγεθος πόρων 13
 1.5 Μέθοδοι χαρακτηρισμού πορωδών υλικών 13
Κεφάλαιο 2ο – Από την ανακάλυψη των ζεόλιθων στην ανάπτυξη αργιλοφωσφορικών μοριακών ηθμών και εφαρμογές αυτών 25
 2.1 Εισαγωγή – Ζεόλιθοι ... 25
 2.2 Ιστορική αναδρομή των κρυσταλλικών πορωδών υλικών 27
 2.3 Δομή και ιδιότητες αργιλοφωσφορικών μοριακών ηθμών 30
 2.4 Μεταλλικά υποκατεστημένα αργιλοφωσφορικά υλικά 32
 2.5 Μέθοδοι σύνθεσης AlPO ... 34
 2.6 Ρόλος του οργανικού μορφοποιητή πλέγματος 36
 2.7 Μηχανισμός πυρήνωσης και κρυστάλλωσης 38
 2.8 AlPO₄-5: Δομή και υποκαταστάσεις 45
 2.9 AlPO-34: Δομή και υποκαταστάσεις 47
 2.10 Εφαρμογές των αργιλοφωσφορικών μοριακών ηθμών 49
Κεφάλαιο 3ο – Δέσμευση, αποθήκευση και αξιοποίηση του διοξειδίου του άνθρακα (Carbon dioxide Caption, Utilization and Storage technologies - CCUS) 53
 3.1 Διοξείδιο του άνθρακα CO₂ 53
 3.2 Περιορισμός της κλιματικής αλλαγής μέσω τεχνικών συλλογής και αποθήκευσης διοξειδίου του άνθρακα 55
 3.3 Αξιοποίηση αργιλοφωσφορικών μοριακών ηθμών για συλλογή διοξειδίου του άνθρακα ... 63
Πειραματικό μέρος ... 66
Κεφάλαιο 4ο – Σύνθεση αργιλοφωσφορικών μοριακών ηθμών 66
 4.1 Σύνθεση AlPO₄-5 .. 66
Κατάλογος Εικόνων

ΕΙΚΟΝΑ 33 - ΔΙΑΦΟΡΕΣ ΜΕΓΕΘΥΝΣΕΙΣ ΠΟΡΩΝ ... 10
ΕΙΚΟΝΑ 32 - ΑΝΑΛΥΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΤΟΥ ΠΟΡΩΔΟΥΣ 14
ΕΙΚΟΝΑ 31 - ΙΣΟΘΕΡΜΙΑ ΦΥΣΙΟΡΟΦΗΣ .. 17
ΕΙΚΟΝΑ 30 - ΒΡΟΧΟΙ ΥΣΤΕΡΗΣΗΣ .. 19
ΕΙΚΟΝΑ 29 - ΕΙΚΟΝΑ ΣΕ ΑΝΑΠΤΥΞΗ ΧΡΟΝΟΥ ΑΝΑΠΤΥΞΗΣ ... 22
ΕΙΚΟΝΑ 28 - ΕΙΚΟΝΑ ΣΕ ΛΑΤΙΝΟ ΣΕ ΔΙΑΦΟΡΕΤΙΚΟΥΣ ΜΟΡΙΑΚΟΥΣ ΜΕΓΕΘΥΝΣΕΙΣ ΧΡΟΝΟΥ ΑΝΑΠΤΥΞΗΣ ... 23
ΕΙΚΟΝΑ 27 - ΤΕΤΡΑΔΡΙΚΗ ΔΙΑΜΟΡΦΩΣΗ ΜΕ ΤΟΠΟΘΕΤΗΣΗ ΜΟΡΙΟΥ SI/AL ΣΤΟ ΚΕΝΤΡΟ & ΑΤΟΜΑ ΟΞΥΓΟΝΟΥ ΣΤΙΣ ΓΩΝΙΕΣ ... 25
ΕΙΚΟΝΑ 26 - (A) ΣΩΛΑΙΩΣΗ, (B) ΑΠΟΛΟΙΠΗΜΕΝΗ ΣΧΗΜΑΤΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΖΕΟΛΙΤΟΥ Α .. 26
ΕΙΚΟΝΑ 25 - ALPO-18 ΜΕ ΤΟΠΟΛΟΓΙΑ ΑΕΙ .. 31
ΕΙΚΟΝΑ 24 - ΚΑΤΗΓΟΡΙΕΣ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΑΡΓΙΛΙΟΥ ΚΑΙ ΦΩΣΦΟΡΟΥ ΑΠΟ ΜΕΤΑΛΛΑ 33
ΕΙΚΟΝΑ 23 - ΣΧΗΜΑΤΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΥΔΡΟΘΕΡΜΙΚΗΣ ΣΥΝΘΕΣΗΣ 35
ΕΙΚΟΝΑ 22 - ΑΛΔΕΥΔΗΣ (Α΄) ΣΕΙΣ ΠΟΡΩΝ ΠΟΥ ΒΡΙΣΚΟΝΤΑΙ ΣΕ ΣΕΙΣ ΠΟΡΩΝ ΡΟΜΑ ΑΠΟ ΔΙΑΦΟΡΕΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΜΕΓΕΘΥΝΣΕΙΣ 40
ΕΙΚΟΝΑ 21 - ΕΙΚΟΝΑ ΣΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΜΕΓΕΘΥΝΣΕΙΣ .. 41
ΕΙΚΟΝΑ 20 - ΔΟΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ALPO-5 ... 46
ΕΙΚΟΝΑ 19 - ΠΛΑΣΜΟΥ ΑΕΙ ΣΤΟ ΚΕΝΤΡΟ ΒΡΙΣΚΕΤΑΙ Ο 12-ΜΕΛΗΣ ΔΑΚΤΥΛΙΟΣ, ΓΥΡΩ ΑΠΟ ΑΥΤΟΝ 4-ΜΕΛΕΣ ΚΑΙ 6-ΜΕΛΕΣ ΔΑΚΤΥΛΙΟΙ ΣΥΓΚΡΑΤΟΥΝ ΤΗ ΔΟΜΗ ... 46
ΕΙΚΟΝΑ 18 - ΤΡΙΕΙΔΙΑΣΤΑΤΗ ΔΟΜΗ ΑΛΡΟ-34 ... 48
ΕΙΚΟΝΑ 17 - (A) ΚΥΝΔΥΛΙΔΑ ΧΑΜΠΑΖΙΤΗ, (B) ΤΡΙΕΙΔΙΑΣΤΑΤΗ ΔΟΜΗ ΑΛΡΟ-34 ΚΑΙ ΣΧΗΜΑΤΙΣΜΟΣ ΟΞΙΝΩΝ ΘΕΣΕΩΝ ... 49
ΕΙΚΟΝΑ 16 - ΣΥΝΘΕΣΗ ΑΣΜΟ-ΑΛΔΕΥΔΗΣ (JASMINALDEHYDE) ... 50
ΕΙΚΟΝΑ 15 - ΣΤΑΣΙΑ ΣΥΝΘΕΣΕΩΣ ΑΟΑΡΟ-5 .. 51
ΕΙΚΟΝΑ 14 - ΔΟΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ALPO-5 ... 46
ΕΙΚΟΝΑ 13 - ΔΟΜΗ ΑΦΙ, ΣΤΟ ΚΕΝΤΡΟ ΒΡΙΣΚΕΤΑΙ Ο 12-ΜΕΛΗΣ ΔΑΚΤΥΛΙΟΣ, ΓΥΡΩ ΑΠΟ ΑΥΤΟΝ 4-ΜΕΛΕΣ ΚΑΙ 6-ΜΕΛΕΣ ΔΑΚΤΥΛΙΟΙ ΣΥΓΚΡΑΤΟΥΝ ΤΗ ΔΟΜΗ ... 46
ΕΙΚΟΝΑ 12 - (A) ΑΛΡΟ-14 ΠΟΥ ΠΕΡΙΕΧΕΙ ΣΔΑ ΚΑΙ ΜΟΡΙΑ ΝΕΡΟΥ, (B) ΟΥΔΕΤΕΡΗ ΚΑΙ ΠΟΡΩΔΗΣ ΔΟΜΗ ΥΣΤΕΡΑ ΑΠΟ ΤΟ ΚΑΤΑΛΟΓΟΣ ΕΙΚΟΝΩΝ ... 38
ΕΙΚΟΝΑ 11 - ΑΝΑΛΥΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΣΥΝΘΕΣΗ ΙΑΣΜΟΥ ... 38
ΕΙΚΟΝΑ 10 - ΚΑΤΗΓΟΡΙΕΣ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΑΡΓΙΛΙΟΥ ΚΑΙ ΦΩΣΦΟΡΟΥ ΑΠΟ ΜΕΤΑΛΛΑ 33
ΕΙΚΟΝΑ 9 - ALRO-18 ΜΕ ΤΟΠΟΛΟΓΙΑ ΑΕΙ .. 31
ΕΙΚΟΝΑ 8 - (A) ΣΩΛΑΙΩΣΗ, (B) ΑΠΟΛΟΙΠΗΜΕΝΗ ΣΧΗΜΑΤΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΖΕΟΛΙΤΟΥ Α .. 26
ΕΙΚΟΝΑ 7 - ΛΙΘΟΥ ΑΕΡΙΩΝ ... 23
ΕΙΚΟΝΑ 6 - ΑΝΑΚΛΩΜΕΝΕΣ ΑΚΤΙΝΕΣ ΠΟΥ ΒΡΙΣΚΟΝΤΑΙ ΣΕ ΦΑΣΗ .. 23
ΕΙΚΟΝΑ 5 - ΕΙΚΟΝΑ ΣΕ ΑΝΑΠΤΥΞΗ ΧΡΟΝΟΥ ΑΝΑΠΤΥΞΗΣ ... 22
ΕΙΚΟΝΑ 4 - ΒΡΟΧΟΙ ΥΣΤΕΡΗΣΗΣ .. 19
ΕΙΚΟΝΑ 3 - ΙΣΟΘΕΡΜΙΑ ΦΥΣΙΟΡΟΦΗΣ .. 17
ΕΙΚΟΝΑ 2 - ΕΙΚΟΝΑ ΣΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΜΕΓΕΘΥΝΣΕΙΣ .. 10
ΕΙΚΟΝΑ 1 - ΔΙΑΦΟΡΕΣ ΔΙΑΜΟΡΦΩΣΕΙΣ ΠΟΡΩΝ .. 10
Κατάλογος Πινάκων

ΠΙΝΑΚΑΣ 1 - ΔΙΕΡΓΑΣΙΕΣ ΟΡΥΚΤΩΝ ΚΑΥΣΙΜΩΝ & ΒΙΟΜΑΣΑΣ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΤΙΣ ΕΚΠΟΜΠΕΣ ΔΙΟΞΕΙΔΙΟΥ ΤΟΥ ΑΝΘΡΩΠΑ .. 54
ΠΙΝΑΚΑΣ 2 - ΑΝΑΣΚΟΠΗΣΗ ΤΕΧΝΟΛΟΓΙΑΣ ΣΥΛΛΟΓΗΣ, ΑΠΟΟΘΗΚΕΥΣΗΣ ΚΑΙ ΔΙΕΡΓΑΣΙΕΣ ΔΙΟΞΕΙΔΙΟΥ ΤΟΥ ΑΝΘΡΩΠΑ ΚΑΙ ΕΠΙΠΕΔΟ ΟΡΙΜΟΤΗΤΑΣ ΑΝΑ ΚΑΤΗΓΟΡΙΑ .. 63
ΠΙΝΑΚΑΣ 3 - ΤΕΧΝΟΛΟΓΙΕΣ ΔΙΑΧΩΡΙΣΜΟΥ ΚΑΙ ΟΙ ΜΕΘΟΔΟΙ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ 64
ΠΙΝΑΚΑΣ 4 - ΜΕΤΑΒΟΛΗ ΔΙΑΣΤΑΣΕΩΝ ΜΟΝΑΔΑΙΩΝ ΚΥΨΕΛΙΔΑΣ, ΥΣΤΕΡΑ ΑΠΟ ΤΗΝ ΥΠΟΚΑΤΑΣΤΑΣΗ ΜΕΤΑΛΛΟΥ ΣΤΟ ΔΙΚΤΥΟ ΤΩΝ ΑΛΡΟ-5 ... 75
ΠΙΝΑΚΑΣ 5 - ΔΕΔΟΜΕΝΑ ΡΟΦΗΣΗΣ ΔΙΟΞΕΙΔΙΟΥ ΤΟΥ ΑΝΘΡΩΠΑ ΓΙΑ ΔΕΙΓΜΑΤΑ ΠΥΡΩΣΗΣ 84
ΠΙΝΑΚΑΣ 6 - ΔΕΔΟΜΕΝΑ ΡΟΦΗΣΗΣ ΔΙΟΞΕΙΔΙΟΥ ΤΟΥ ΑΝΘΡΩΠΑ ΓΙΑ ΔΕΙΓΜΑΤΑ ΠΥΡΟΛΥΣΗΣ 86
ΠΙΝΑΚΑΣ 7 - ΔΕΔΟΜΕΝΑ ΡΟΦΗΣΗΣ CO2 ΑΠΟ ΑΛΡΟ-5 ΚΑΙ ΜΕΑΡΟ’S ΜΕ 5% ΣΥΓΚΕΝΤΡΩΣΗ ΜΕΤΑΛΛΟΥ ... 90
ΠΙΝΑΚΑΣ 8 - ΔΕΔΟΜΕΝΑ ΡΟΦΗΣΗΣ ΓΙΑ ΔΕΙΓΜΑΤΑ FEARO-5 ΔΙΑΦΟΡΕΤΙΚΗΣ ΣΥΓΚΕΝΤΡΩΣΗΣ ΜΕΤΑΛΛΟΥ .. 92
ΠΙΝΑΚΑΣ 9 - ΔΕΔΟΜΕΝΑ ΡΟΦΗΣΗΣ CO2 ΑΠΟ ΑΛΡΟ-5 ΜΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΓΚΕΝΤΡΩΣΕΙΣ ΝΕΡΟΥ ... 94
ΠΙΝΑΚΑΣ 10 - ΜΕΓΙΣΤΕΣ ΤΙΜΕΣ ΡΟΦΗΣΗΣ CO2 ΣΕ ΑΛΡΟ-5 ΜΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΓΚΕΝΤΡΩΣΕΙΣ ΝΕΡΟΥ ΣΤΟΥΣ 25 ºC .. 95
ΠΙΝΑΚΑΣ 11 - ΜΕΓΙΣΤΕΣ ΤΙΜΕΣ ΡΟΦΗΣΗΣ CO2 ΤΟΥ ΑΛΡΟ-5 ΣΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΘΕΡΜΟΚΡΑΣΙΕΣ 96
ΠΙΝΑΚΑΣ 12 - ΣΤΑΘΕΡΕΣ ΚΙΝΗΤΙΚΗΣ Κ

Κατάλογος Διαγραμμάτων

ΔΙΑΓΡΑΜΜΑ 1 - ΡΥΘΜΟΣ ΠΥΡΗΝΟΣΟΣ ΣΥΝΑΡΤΗΣΗΙ ΤΟΥ ΥΠΕΡΚΟΡΕΣΜΟΥ ... 43
ΔΙΑΓΡΑΜΜΑ 2 - ΜΕΤΑΒΟΛΗ ΤΟΥ ΡΥΘΜΟΥ ΠΥΡΗΝΟΣΟΣ, ΤΟΥ ΜΕΓΕΘΟΥΣ ΚΡΥΣΤΑΛΛΩΝ ΚΑΙ ΤΟΥ ΥΠΕΡΚΟΡΕΣΜΟΥ ΣΥΝΑΡΤΗΣΗΙ ΤΟΥ ΧΡΟΝΟΥ ... 45
ΔΙΑΓΡΑΜΜΑ 3 – ΑΠΕΛΕΥΘΕΡΩΣΗ CO2 ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ ΑΠΟ ΕΡΓΩΣΤΑΣΙΑ ΜΕ ΚΑΙ ΧΩΡΙΣ ΣΥΣΤΗΜΑ ΣΥΛΛΟΓΗΣ ΚΑΙ ΑΠΟΟΘΗΚΕΥΣΗΣ CO2 ... 56
ΔΙΑΓΡΑΜΜΑ 4 - ΜΕΙΩΣΗ ΤΗΣ ΡΟΦΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕ ΑΥΞΗΣΗ ΤΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΕ ΔΟΜΕΣ ALRO ... 65
ΔΙΑΓΡΑΜΜΑ 5 - ΣΥΓΚΡΙΣΗ ΔΙΑΓΡΑΜΜΑΤΩΝ XRD ΓΙΑ ΑΛΡΟ-5 ΣΤΑ ΟΠΟΙΑ ΔΕΝ ΕΧΕΙ ΕΧΕΙ ΓΙΝΕΙ ΠΥΡΩΣΗ, ΕΧΕΙ ΓΙΝΕΙ ΠΥΡΩΣΗ ΣΤΟΥΣ 600 ºC ΚΑΙ 700 ºC ... 90
ΔΙΑΓΡΑΜΜΑ 7 - ΓΡΑΦΗΜΑ XRD ΤΩΝ ΜΕΤΑΛΛΙΚΩΝ ΥΠΟΚΑΤΑΣΤΗΜΩΝ ΑΛΡΟ-5 ΜΕ ΜΟΡΙΑΚΗ ΑΝΑΛΟΓΙΑ AIL. 1:3 P: 0.05 ME: 1:2 ΤΕΛ: 100 H2O ΚΑΙ ΤΟΥ ΑΛΡΟ-5 ... 72
ΔΙΑΓΡΑΜΜΑ 8 - ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΩΡΥΦΕΣ ΤΩΝ ΤΟΝ ΔΟΜΩΝ ΑΣΙ, ΕΝΔΕΙΚΤΙΚΕΣ ΤΗΣ ΚΡΥΣΤΑΛΛΙΚΟΤΗΤΑΣ ΤΩΝ ΔΟΜΩΝ .. 73
ΔΙΑΓΡΑΜΜΑ 9 - ΔΙΑΓΡΑΜΜΑ XRD ΓΙΑ ΥΠΟΚΑΤΑΣΤΗΜΕΝΑ ΑΛΡΟ-5 ΜΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΓΚΕΝΤΡΩΣΕΙΣ ΣΙΔΗΡΟΥ. ΞΕΚΙΝΩΝΤΑΣ ΑΠΟ ΚΑΤΩ ΑΠΕΙΚΟΝΙΖΟΝΤΑΙ ΤΑ ΔΕΙΓΜΑΤΑ ΜΕ ΜΟΡΙΑΚΗ ΑΝΑΛΟΓΙΑ 2.5, 5, 7.5 ΚΑΙ 10%. ... 76
ΔΙΑΓΡΑΜΜΑ 10 – ΔΙΑΓΡΑΜΜΑ XRD ΓΙΑ ΔΕΙΓΜΑΤΑ ΑΛΡΟ-5 ΜΕ ΔΙΑΦΟΡΕΤΙΚΗ ΣΥΓΚΕΝΤΡΩΣΗ ΝΕΡΟΥ 100 & 400 ... 77
ΔΙΑΓΡΑΜΜΑ 11 - ΠΡΟΣΡΟΦΗΣΗ CO2 ΣΕ ΑΛΡΟ-5 ΤΟ ΟΠΟΙΟ ΕΧΕΙ ΥΠΟΣΤΕΙ ΠΥΡΩΣΗ ΣΤΟΥΣ 400 ºC (●) ΚΑΙ ΣΤΟΥΣ 700 ºC (●) ... 83
ΔΙΑΓΡΑΜΜΑ 12 - ΠΡΟΣΡΟΦΗΣΗ CO2 ΣΕ ΑΛΡΟ-5 ΤΟ ΟΠΟΙΟ ΕΧΕΙ ΥΠΟΣΤΕΙ ΠΥΡΩΣΗ ΣΤΟΥΣ 240 ºC (●), 400 ºC (●) ΚΑΙ 700 ºC (△) ... 85
ΔΙΑΓΡΑΜΜΑ 13 – ΣΥΓΚΡΙΣΗ ΔΕΙΓΜΑΤΩΝ ΠΟΥ ΕΧΟΥΝ ΥΠΟΣΤΕΙ ΠΥΡΩΣΗ ΣΤΟΥΣ 400 ºC (△) ΚΑΙ 700 ºC (●) ΚΑΙ ΔΕΙΓΜΑΤΩΝ ΠΟΥ ΕΧΟΥΝ ΠΥΡΩΣΗ ΣΤΟΥΣ 400 ºC (●) ΚΑΙ 700 ºC (●) 87
ΔΙΑΓΡΑΜΜΑ 14 – ΠΡΟΣΡΟΦΗΣΗ CO2 ΣΕ ΑΛΡΟ-5 (●) ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΜΕΤΑΛΛΙΚΑ ΥΠΟΚΑΤΑΣΤΗΜΕΝΟΥΣ ΑΡΓΙΛΟΔΟΦΟΡΙΚΟΥΣ ΜΟΡΙΑΚΟΥΣ ΧΗΜΟΥΣ ΣΕ ΜΟΡΙΑΚΗ ΑΝΑΛΟΓΙΑ ME:AL 5/100., ΠΥΡΙΤΙΟ ΣΑΡΟ-5 (●), ΣΙΔΗΡΟΣ ΦΕΑΡΟ-5 (●), ΜΑΓΝΗΣΙΟ ΜΓΑΡΟ-5 (●), ΚΟΒΑΛΤΙΟ ΣΟΑΡΟ-5 (△) .. 88
ΔΙΑΓΡΑΜΜΑ 15 – ΠΡΟΣΡΟΦΗΣΗ CO₂ ΣΕ FEAP0-5 ΜΕ ΔΙΑΦΟΡΕΤΙΚΕΣ ΣΥΓΚΕΝΤΡΩΣΕΙΣ ΜΕΤΑΛΛΟΥ, 2.5% (▲), 5% (●), 7.5% (◆) ΚΑΙ 10% (■) .. 91
ΔΙΑΓΡΑΜΜΑ 16 – ΠΡΟΣΡΟΦΗΣΗ CO₂ ΣΕ ΥΛΙΚΑ ALPO₄-5 ΜΕ ΜΟΛΑΡΙΚΗ ΑΝΑΛΟΓΙΑ ΝΕΡΟΥ 100 (●) ΚΑΙ 400 (■) .. 93
ΔΙΑΓΡΑΜΜΑ 17 – ΣΥΓΚΡΙΣΗ ΡΟΦΗΣΗΣ ΑΝΑ ΜΟΝΑΔΑ ΧΡΟΝΟΥ (MIN) ΓΙΑ ΑΛΡΟ₄-5 ΜΕ ΜΟΡΙΑΚΗ ΑΝΑΛΟΓΙΑ ΝΕΡΟΥ 100 (●) ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΗ ΝΕΡΟΥ 400 (▲) .. 96
ΔΙΑΓΡΑΜΜΑ 18 – ΣΥΓΚΡΙΣΗ ΡΟΦΗΣΗΣ ΑΝΑ ΜΟΝΑΔΑ ΧΡΟΝΟΥ (MIN) ΓΙΑ ΤΟ 100.ALPO₅.W ΣΤΟΥΣ 25 °C (●), 45 °C (▲) ΚΑΙ 60 °C (◆) .. 97
ΔΙΑΓΡΑΜΜΑ 19 – ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ LANERGEN ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΣΤΑΘΕΡΑΣ Κ ΣΤΟΥΣ 25 °C.. 98
ΔΙΑΓΡΑΜΜΑ 20 - ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ LANERGEN ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΣΤΑΘΕΡΑΣ Κ ΣΤΟΥΣ 45 °C.. 99
ΔΙΑΓΡΑΜΜΑ 21 - ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ LANERGEN ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΣΤΑΘΕΡΑΣ Κ ΣΤΟΥΣ 60 °C.. 99
ΔΙΑΓΡΑΜΜΑ 22 – ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ARRHENIUS ΓΙΑ ΤΙΣ ΣΤΑΘΕΡΕΣ ΚΙΝΗΤΙΚΗΣ ΠΟΥ ΥΠΟΛΟΓΙΣΤΗΚΑΝ ΣΤΙΣ ΤΡΕΙΣ ΘΕΡΜΟΚΡΑΣΙΕΣ .. 100
Περίληψη

Στόχος της συγκεκριμένης διπλωματικής εργασίας ήταν η σύνθεση κρυσταλλικών πορωδών δομών και πιο συγκεκριμένα, η δημιουργία αργιλοφωσφορικών μοριακών ημιών AlPO$_4$-5. Τα υλικά αυτά έχουν δομή AFI και ανήκουν στην ευρύτερη οικογένεια των ζεόλιθων με τη διαφορά ότι ο φωσφόρος υποκαθιστά το πυρίτιο στο τρισδιάστατο δίκτυο. Οι προσπάθειες ανάπτυξης νέων υλικών για τη μείωση των εκπομπών διοξειδίου του άνθρακα οδήγησαν στη διερεύνηση της αποτελεσματικότητας των AlPO$_4$-5 ως ροφητές. Εκτός από τον περιορισμό των εκπομπών CO$_2$ επιχειρείται η αξιοποίηση του αερίου για την παραγωγή προϊόντων ή την επαυξημένη ανάκτηση πετρελαίου (Enhanced Oil Recovery).

Στα πειράματα που πραγματοποιήθηκαν δημιουργήθηκαν δείγματα τα οποία περιείχαν εντός των δομών πυρομένο άνθρακα (υπό αεριοδιοξειδίτικες συνθήκες) καθώς και πυρολυμένο (υπό αδρανής ατμόσφαιρα). Ο άνθρακας αυτός προήλθε από τον οργανικό μορφοποιητή πλέγματος που στη συγκεκριμένη εργασία ήταν η τριαιθυλαμίνη. Ακόμα, δημιουργήθηκαν δείγματα στα οποία είχε πραγματοποιηθεί υποκατάσταση μετάλλων (σίδηρος, μαγνήσιο, κοβάλτιο, πυρίτιο) στο δίκτυο των AlPO και για το δείγμα σιδήρου, το οποίο παρουσίασε τη μεγαλύτερη ροφητική ικανότητα, έγινε διερεύνηση της επίδρασης της συγκέντρωσης του μετάλλου. Επίσης, εξετάστηκαν δείγματα με διαφορετική μορφολογία τα οποία συντέθηκαν με διαφορετική μολαρική αναλογία νερού στο πρόδρομο μίγμα. Η προσρόφηση CO$_2$ πραγματοποιήθηκε σε εύρος πιέσεων 0 – 4 bar και θερμοκρασία 25 °C.

Τέλος, πραγματοποιήθηκε ποιοτική μελέτη κινητικής της προσρόφησης για τα δείγματα με διαφορετική μορφολογία, σε θερμοκρασίες 25 – 60 °C, και υπολογίστηκαν οι σταθερές κινητικής k και η ενέργεια ενεργοποίησης E_a.

Λέξεις – Κλειδιά: αργιλοφωσφορικοί μοριακοί ημιών, AlPO$_4$-5, προσρόφηση CO$_2$, μεταλλικά υποκαταστημένα AlPO$_4$-5
Abstract

The aim of the following Thesis was the synthesis of crystalline porous structures. Specifically, the creation of aluminophosphate molecular sieves AlPO₄-5. Those materials have the AFI structure and they are part of the wider category of zeolites, with the exception that phosphorus has substituted silicon at the 3-D framework. Efforts for developing new materials for the reduction of the emissions of carbon dioxide into the atmosphere has led to the examination of AlPO₄-5 as a potential sorbent. Apart from the capture of CO₂, new technologies suggest the utilization of carbon dioxide for the creation of products or for Enhanced Oil Recovery techniques.

For the experiments which were conducted samples with calcined carbon (under oxidative conditions) and with pyrolyzed carbon (under inert atmosphere) have been created. This carbon inside the structures originated from the structure directing agent, which was triethylamine. Additional samples were tested in which the incorporation of metals (iron, magnesium, cobalt, silicon) into the lattice of AlPO’s has been achieved. The iron sample exhibited the best sorption capacity so the effect of metal concentration for sorption results has been further investigated. Another set of experiments tested the sorption of materials with different structure morphology. The above mentioned was implemented with the alteration of the molar composition of water into the reaction mixture. The CO₂ adsorption tests were performed from 0 to 4 bar and at 25 °C.

Furthermore, a quantitative study of the adsorption kinetics has been performed for the samples with different structure morphologies. Tests were done for temperatures between 25 – 60 °C, thus the constant rate k and the activation energy Ea were calculated.

Keywords: aluminophosphates, molecular sieves, AlPO₄-5, CO₂ adsorption, metal substituted AlPO₄-5
Θεωρητικό Μέρος

Κεφάλαιο 1° – Πορώδη υλικά

1.1 Ποιοτική περιγραφή πορωδών υλικών

Με τον όρο πορώδη υλικά προσδιορίζονται τα υλικά εκείνα τα οποία εμπεριέχουν πόρους, δηλαδή κοιλότητες, κανάλια ή διάκενα, με βάθος μεγαλύτερο από ότι το πλάτος τους. Τα περισσότερα υλικά στη φύση είναι πορώδη και είναι αρκετά δύσκολη η παρασκευή πλήρως συμπαγών στερεών δομών. Τα πορώδη μπορούν να κατηγοριοποιηθούν ανάλογα με: α) τη διαμόρφωση που εμφανίζουν οι “κενοί” χώροι του υλικού ως προς την πρόσβασή που έχουν σε εξωτερικά ρευστά και β) το σχήμα που διαθέτουν οι πόροι. Με τον τρόπο αυτό δεν προκύπτουν θέματα ασάφειας ως προς τον χαρακτηρισμό και την ταυτοποίηση.

![Εικόνα 1 - Διάφορες διαμορφώσεις πόρων](image)

α) Πρόσβαση πόρων σε εξωτερικά ρευστά

Στην Εικόνα 1, οι πόροι με τη διαμόρφωση (a) ονομάζονται κλειστοί πόροι (closed pores) μιας και δεν είναι προσβάσιμοι από κάποιο ρευστό που βρίσκεται στο εξωτερικό περιβάλλον. Έτσι, δεν μπορούν να αξιοποιηθούν για προσρόφηση αερίων ή για ροή ρευστών δια μέσω αυτών. Οι πόροι αυτού του είδους μπορούν να επηρεάσουν τις μακροσκοπικές ιδιότητες του στερεού, όπως την φαινόμενη πυκνότητα, τη μηχανική αντοχή και τη θερμική αγωγιμότητα. Οι πόροι με τη διαμόρφωση (b), (c), (d), (e), και (f) βρίσκονται σε συνεχή επαφή με το εξωτερικό περιβάλλον και ονομάζονται ανοιχτοί πόροι (open pores). Περαιτέρω κατηγοριοποίηση προκύπτει εάν εξετασθεί η συνολική προσβασιμότητα των πόρων αυτών. Έτσι λοιπόν, αυτοί που εμφανίζουν μόνο
μια είσοδο χωρίς έξοδο στην άλλη πλευρά (όπως οι (b) & (f)) ονομάζονται τυφλοί πόροι (blind pores) ή νεκρού άκρου (dead-end pores), ενώ υπάρχουν και αυτοί που διαθέτουν άνοιγμα και στις δύο πλευρές (through pores), όπως o (e).

β) Σχήμα πόρων

Με κριτήριο το σχήμα τους, οι πόροι μπορεί να είναι είτε ανοιχτοί κυλινδρικοί (cylindrical open), όπως ο πόρος (c) στην Εικόνα 1 ή τυφλοί κυλινδρικοί (cylindrical blind), όπως ο πόρος (f). Ακόμα, υπάρχουν οι διαμορφώσεις μελανόδοχείου (b) και οι διαμορφώσεις χοάνης (funnel shaped) ή αλλιώς σχισμειοδή (d). Τέλος, υπάρχει και η περιοχή τραχύτητας (roughness) της εξωτερικής επιφάνειας (g), η οποία διαφέρει από το πορώδες αλλά μπορεί να προσομοιώσει τη διαμόρφωση πόρων στην περίπτωση που οι κουλίντες που σχηματίζονται στην περιοχή αυτή είναι αρκετά βαθύτερες σε σχέση με το πλάτος τους.

Τα πορώδη υλικά αποτελούν μια σημαντική κατηγορία τόσο φυσικών όσο και τεχνητών υλικών. Πολλές από τις οργανικές λειτουργίες φυτικών και ζωικών οργανισμών, όπως η αναπνοή και μεταφορά ρευστών, πραγματοποιούνται χάρις τις πορώδες δομές των ιστών. Τα πετρώματα ιζηματογενούς προέλευσης αποτελούν ακόμα ένα παράδειγμα πορωδών υλικών, όπως οι ασβεστόλιθοι, οι δομολίτες και οι ψαμμίτες, τα οποία αποτελούν τις πιο σημαντικές κατηγορίες ταμιευτήρων πετρελαίου και φυσικού αερίου. Στα τεχνητά υλικά κυρίως συναντάται οργανικά υλικά, πολυμερικοί αφροί, αλλά και ανόργανα υλικά τα οποία χρησιμοποιούνται σε πληθώρα εφαρμογών, όπως μόνωση, προστατευτικά, καταλύσεις, κατασκευαστικά υλικά κ.α. [2]

1.2 Μεθοδολογίες σχηματισμού πορωδών υλικών

Υπάρχουν κάποιες δομές στις οποίες η παρουσία πόρων υπάρχει ως εγχενείς χαρακτηριστικό, όπως για παράδειγμα οι κρυσταλλικές δομές (πχ ζεόλιθοι, αργιλικά ορυκτά κ.α). Η σύνθεση αυτών των σταθερών δομών οδηγεί στη δημιουργία δικτύων, συνήθως μοριακών διαστάσεων, με αυξημένη κανονικότητα. Ένας άλλος τρόπος για τη δημιουργία πορωδών υλικών είναι η αρχική χαλαρή διευθέτηση μορίων (loose packing) και η επακόλουθη ενοποίηση των μικρών μορίων. Η διαδικασία αυτή συναντάται συνήθως σε ανόργανες γέλες και στα κεραμικά ενώ η τελική δομή επηρεάζεται σημαντικά από την αρχική διευθέτηση των μορίων καθώς και από το
μέγεθος τους. Η τρίτη μέθοδος αναφέρεται ως αφαιρετική μέθοδος και αποτελεί την πιο διαδεδομένη μέθοδο για τη δημιουργία πορώδων υλικών. Σύμφωνα με αυτή, κάποιο συγκεκριμένο στοιχείο επιλέγεται να απομακρυνθεί από την αρχική δομή ώστε να δημιουργηθούν οι επιθυμητοί πόροι. Πληθώρα οργανικών πολυμερικών μεμβρανών με το επιθυμητό πορώδες δημιουργούνται με αυτή τη μέθοδο και συνήθως πραγματοποιείται κάποια θερμική αποκοδόμηση είτε υδροξειδίων, ή νιτρικών ή ανθρακικών αλάτων. Παρόμοιοι μηχανισμοί, αλλά πιο σύνθετοι, αξιοποιούνται επίσης για τη δημιουργία ενεργού άνθρακα. Τέλος, όσον αφορά τους φυτικούς και ζωικούς ιστούς η δημιουργία πόρων είναι ζωτικής σημασίας και πρέπει να ικανοποιήσει πολύ αυστηρές απαιτήσεις. Η ακριβής δημιουργία των ιστών δεν είναι ακόμα πλήρως κατανοητή ακολουθεί όμως τις φυσικές διεργασίες της διχοτόμησης και αυτό-οργάνωσης των κυττάρων. [1]

1.3 Ορισμός πορώδους
Για τον ορισμό του μεγέθους αυτού είναι χρήσιμο πρώτα να αποσαφηνιστούν κάποιοι όροι σχετικοί με τα πορώδη υλικά. Αρχικά, η πυκνότητα του υλικού μπορεί να λάβει τρεις διαφορετικές διαστάσεις ανάλογα με τον όγκο που προσμετράται. Έτσι, συναντάται η πραγματική πυκνότητα, στην οποία δεν υπολογίζονται οι πόροι και τα διαμοριακά κενά. Η φαινόμενη πυκνότητα (apparent density) στην οποία περιλαμβάνονται μόνο οι κλειστοί και μη προσβάσιμοι πόροι. Τέλος, υπάρχει μια τρίτη μορφή πυκνότητας στην οποία υπολογίζεται το άθροισμα των κλειστών και ανοιχτών πόρων, η οποία επίσης μεταφράζεται ως φαινόμενη πυκνότητα και για αυτό προτιμάται ο αγγλικός όρος – bulk density.

Ακόμα ορίζεται ο όγκος των πόρων V_p, ο οποίος μπορεί να μετρηθεί με διάφορες τεχνικές και για αυτό πρέπει να αναφέρεται ποια χρησιμοποιείται κάθε φορά.

Με βάση τα παραπάνω ορίζεται το πορώδες ε το οποίο ισούται με τον λόγο του συνολικού όγκου των πόρων V_p προς το φαινόμενο όγκο V (apparent volume) του σωματιδίου ($\varepsilon = V / V_p$). Στον φαινόμενο όγκο δηλαδή δεν υπολογίζονται τα διαμοριακά κενά. Επίσης, κάποιες φορές παρατηρείται διάκριση μεταξύ ανοιχτού πορώδους και κλειστού πορώδους και τότε πάλι πρέπει να αναφέρονται οι τεχνικές που χρησιμοποιήθηκαν για τον υπολογισμό του όγκου των πόρων.
Για απλούστευση στους υπολογισμούς θεωρείται ότι το σχήμα των πόρων περιγράφεται ιδανικά από μορφολογία κυλίνδρων, πρισμάτων, κοιλοτήτων και παραθύρων, σχισμοειδών ή σφαιρών. Φυσικά, στην πραγματική διαμόρφωση των πόρων μπορούν να συναντηθούν περίπλοκα σχήματα τα οποία οφείλονται στα διαφορετικά σχήματα πόρων του ίδιου υλικού, σε συνδέσεις μεταξύ πόρων – κανάλια διαφορετικού μεγέθους και σχήματος- αλλά και στην διαφορετική κατανομή του μεγέθους των πόρων.

1.4 Κατηγοριοποίηση πορωδών υλικών με βάση το μέγεθος πόρων

Η κατηγοριοποίηση κατά IUPAC υποδεικνύει τρεις κατηγορίες για τα διάφορα μεγέθη πόρων που συναντώνται στα πορωδή υλικά.

1. Μικροπορώδη, πόροι μικρότεροι από 2 nm
2. Μεσοπορώδη, πόροι μεταξύ 2 και 50 nm
3. Μακροπορώδη, πόροι μεγαλύτεροι από 50 nm [1]

1.5 Μέθοδοι χαρακτηρισμού πορωδών υλικών

Ο ορισμός του πορώδους σαν έννοια μπορεί να είναι εύκολος στην κατανόηση, όμως δεν είναι καθόλου εύκολη η ποσοτικοποίηση του κλάσματος του κενού όγκου προς τον συνολικό όγκο. Αυτό συμβαίνει διότι οι διαστάσεις των κενών αυτών χώρων μπορούν να διαφέρουν αρκετές τάξεις μεγέθους, από νανόμετρα μέχρι δεκάδες ή εκατοντάδες εκατοστά. Είναι λοιπόν επόμενο, να μην υπάρχει μια τεχνική η οποία να μπορεί να καλύψει όλο αυτό το εύρος κλίμακας με ακρίβεια. Συνεπώς, υπάρχουν πάρα πολλές μέθοδοι για τον υπολογισμό του πορώδους και παρότι ο σκοπός είναι ο ίδιος η βασική ιδέα είναι κάθε φορά διαφορετική. Πρώτος ο Magner το 1963 κατηγοριοποίησε τις διάφορες τεχνικές και τις χώρισε σε:

- 7 μεθόδους, για το ολικό πορώδες
- 16 μεθόδους, για το φαινόμενο πορώδες
- 5 μεθόδους, οι οποίες δεν είχε ακόμα εξακριβωθεί τι ακριβώς υπολογίζουν

Οι περισσότερες μέθοδοι υπολογισμού ολικού πορώδους βασίζονταν σε κάποια προσέγγιση φαινόμενου όγκου (πυκνότητας) / συνολικό όγκο (πυκνότητα) ενώ αυτές για το φαινόμενο πορώδες αξιοποιούσαν την ρόφηση κάποιο ρευστού.
Με την εξέλιξη των τεχνικών χαρακτηρισμού πλέον έχουν εισαχθεί πολύ πιο σύνθετες και ακριβείς μέθοδοι, όπως η ηλεκτρονική μικροσκοπία, οι ακτίνες X και η σκέδαση νετρονίων, λόγω της ανάγκης για σαφή κατανόηση του μεγέθους και του σχήματος των πόρων στα διάφορα υλικά.

Στην Εικόνα 2 παρουσιάζονται οι πιο συχνά χρησιμοποιούμενες τεχνικές για τον καθορισμό του πορώδους με βάση το μέγεθος των πόρων του κάθε υλικού.

Όπως γίνεται φανερό προκύπτουν δύο κύριες κατηγορίες, αυτές που βασίζονται στην ακτινοβολία (πχ SEM, TEM) και αυτές που αξιοποιούν κάποιο ρευστό (πχ N2 BET, πυκνομετρία He). Στη συνέχεια, θα αναπτυχθούν κάποιες από τις κυριότερες τεχνικές που χρησιμοποιούνται για τον υπολογισμό του πορώδους.
1.5.1 Εκτόνωση αερίων

Στην τεχνική αυτή αξιοποιούνται οι νόμοι του Boyle, με πιο χαρακτηριστική εφαρμογή την ποροσιμετρία με ήλιο (He porosimetry) η οποία θεωρείται και από τις πιο ακριβείς για την μέτρηση του ανοιχτού πορώδους. Το αέριο ήλιο εκτονώνεται ισοθερμικά στο κελι δείγμα (sample cell) και στη συνέχεια μετράται η πίεση ισορροπίας που προκύπτει.

Το ήλιο παρουσιάζει πολλά πλεονεκτήματα σε σχέση με άλλα αέρια επειδή:

1) Τα μόρια του είναι μικρά και εύκολα εισέρχονται στο εσωτερικό των πόρων
2) Είναι αδρανές και δεν προσροφάται από το υλικό, όπως μπορεί να συνέβαινε με το νερό ή το διοξείδιο του άνθρακα
3) Μπορεί να θεωρηθεί ως ιδανικό αέριο (συντελεστή συμπιεστότητας \(z = 1 \)) για τις θερμοκρασίες και πιέσεις που πραγματοποιείται η μέτρηση
4) Έχει μεγάλο συντελεστή διάχυσης και μπορεί να αξιοποιηθεί ακόμα και σε υλικά με μικρή διαπερασιμότητα

Για τη μέτρηση χρησιμοποιείται ένα δείγμα γνωστού συνολικού όγκου \(V_{bulk} \) σε δοχείο επίσης γνωστού όγκου \(V_a \). Το δοχείο αυτό συνδέεται με άλλο δοχείο γνωστού όγκου \(V_b \), το οποίο είναι κενό και αρχικά δεν επικοινωνεί με το πρώτο δοχείο. Το ήλιο εισάγεται στο πρώτο δοχείο σε πίεση \(P_1 \), συνήθως 100 psi, και στη συνέχεια συνδέεται και το δεύτερο δοχείο μέχρι να εξισορροπηθεί η πίεση. Στη συνέχεια το αέριο εισέρχεται στους πόρους του υλικού και παρατηρείται μια πτώση πίεσης \(P_2 \). Με βάση του νόμου των ιδανικών αερίων ο όγκος των πόρων \(V_n \) υπολογίζεται από την ακόλουθη εξίσωση:

\[
V_n = V_{bulk} - V_a - V_b \cdot \left(\frac{P_2}{P_2 - P_1} \right)
\]

Έτσι, το πορώδες υπολογίζεται τελικά από τη σχέση \(e = V_n / V_{bulk} \). Η μέθοδος αυτή εντάσσεται στην ευρύτερη κατηγορία των πυκνομετρικών μεθόδων (pycnometry method) και εμφανίζει αρκετές ομοιότητες με τη μέθοδο BET. [3]
1.5.2 Προσρόφηση αερίου

Η τεχνική προσρόφησης αερίου σε χαμηλές πιέσεις χρησιμοποιείται ευρέως για την εύρεση του πορώδους καθώς και για τον προσδιορισμό της ειδικής επιφάνειας και της κατασκευαστικά υλικά. Το αέριο που χρησιμοποιείται κυρίως στην τεχνική αυτή είναι το άζωτο (77 K) και μπορεί να χαρακτηρίσει πόρους από 2 – 300 nm. Άλλα αέρια που μπορούν να χρησιμοποιηθούν είναι το κρυστάλλο (77 K), το αργό (87 K) και το διοξείδιο του άνθρακα (273 K).

Φυσιορόφηση (physisorption) ονομάζεται το φαινόμενο κατά το οποίο όταν ένα προσροφητικό αέριο έρθει σε επαφή με την επιφάνεια ενός στερεού (προσροφητής) αναπτύσσονται ασθενείς διαμοριακές δυνάμεις μεταξύ τους. Αυτές οι διαμοριακές δυνάμεις συνήθως είναι τύπου Van der Waals και οφείλονται στην σχετική γεωμετρία και τις ηλεκτρονιακές φορτίσεις των δύο στοιχείων. Η φυσιορόφηση εμφανίζει αρκετά πλεονεκτήματα για την αξιολόγηση του πορώδους και της ειδικής επιφάνειας ενός υλικού. Κατά τη διάρκεια της ρόφησης μικρά ή και μηδαμινά ποσά θερμότητας παράγονται οπότε δεν προκύπτει κάποια "βίαιη" αλλαγή στο υλικό. Οι χαμηλές θερμοκρασίες ευνοούν την ρόφηση και επιταχύνουν την επίπεδη ισορροπία, με αποτέλεσμα να απαιτείται μικρή ή και καθόλου ενέργεια ενεργοποίησης. Το πιο σημαντικό χαρακτηριστικό της φυσικής ρόφησης είναι πως είναι πλήρως αναστρέψιμη και η εκρόφηση μπορεί να δώσει πολύ σημαντικές πληροφορίες για το είδος των πόρων. [3]

Υπάρχουν δύο κύριες κατηγορίες για τον προσδιορισμό της ποσότητας του αερίου που έχει προσροφηθεί: α) αυτές που βασίζονται στην ποσότητα αερίου που απομακρύνεται από την αέρια φάση (ογκομετρική μέθοδος) β) αυτές που μετρούν την κατακράτηση του αερίου από τον προσροφητή (σταθμική μέθοδος). Στις περισσότερες περιπτώσεις προτιμάται η ογκομετρική μέθοδος αν και η σταθμική μέθοδος μπορεί να δώσει αποτελέσματα για την ρόφηση ατμών κοντά ή στην θερμοκρασία περιβάλλοντος. Στην ογκομετρική μέθοδο, μια γνωστή ποσότητα καθαρού αερίου παρέχεται σε γνωστό όγκο που περιέχει τον ροφητή και διατηρείται σε σταθερή θερμοκρασία. Καθώς το φαινόμενο της ρόφησης εξελίσσεται η πίεση μειώνεται μέχρι να φτάσει την ισορροπία. Η ποσότητα του αερίου που απορροφήθηκε ισούται με τη διαφορά μεταξύ του αερίου
που δόθηκε στην αρχή και της ποσότητας που απαιτείται για να καλύψει τον χώρο γύρω από τον ροφητή, τον "νεκρό" χώρο (dead space) όπως ονομάζεται. Ο όγκος του "νεκρού" χώρου πρέπει να είναι γνωστός εξ' αρχής και αυτό επιτυγχάνεται με προβαθμώματη του χώρου που γίνεται η μέτρηση και αφαιρώντας τον όγκο του ροφητή (έμμεσος υπολογισμός μέσω πυκνότητας).

Η διαδικασία της ρόφησης και της εκρόφησης πραγματοποιείται για κάθε ισόθερμη σημείο – σημείο, παρέχοντας τον απαραίτητο χρόνο ώστε να επέλθει ισορροπία σε κάθε σημείο. Δείγμα το οποίο προηγουμένως έχει απαφεύγει και έχουν αφαιρεθεί όλες οι ουσίες από αυτό εκτίθεται σε άζωτο. Η ποσότητα του προσροφημένου αερίου μετράται σε διακριτούς λόγους σχετικής πίεσης, δηλαδή εφαρμοζόμενης πίεσης P προς την τάση κρουσμού των ατμών του αερίου P₀, με εύρος από 0.0075 έως 0.995 σε σταθερές θερμοκρασίες. Αυξάνοντας σταδιακά την πίεση αρχικά σχηματίζεται ο κλάδος της ρόφησης και στη συνέχεια η μείωση της πίεσης σχηματίζει τον κλάδο της εκρόφησης. Τα δεδομένα αυτά αποτελούν την ισόθερμη ρόφηση. Όταν οι καμπύλες της ρόφησης και της εκρόφησης δεν συμπίπτουν, τότε παρουσιάζεται υστέρηση.

Η πλειοψηφία των ισόθερμων φυσιορόφησης μπορούν να διακριθούν σε έξι βασικές κατηγορίες, οι οποίες φαίνονται στην Εικόνα 3 και αναλύονται στη συνέχεια. [4]
Οι ισόθερμες Τύπου I είναι πλήρως αντιστρεπτές και οι τιμές της ρόφησης προσεγγίζουν μια σταθερή τιμή καθώς η σχετική πίεση τείνει προς την τιμή 1, δηλαδή η πίεση εξισώνεται με την πίεση κορεσμού των ατμών. Ορισμένες φορές αυτού του τύπου οι ισόθερμες ονομάζονται καταχωρητικά ισόθερμες Langmuir. Τέτοιου τύπου ισόθερμες δίνουν μικροπορώδη υλικά με σχετικά μικρή εξωτερική επιφάνεια, όπως ενεργοποιημένοι άνθρακες, μοριακά κόσκινα από ζεόλιθους και ορισμένα πορώδη οξείδια. Ο ρυθμός της προσρόφησης επηρεάζεται κυρίως από την προσβασιμότητα των μικροπόρων παρά από τη διαθέσιμη εσωτερική ειδική επιφάνεια.

Οι ισόθερμες τύπου II, επίσης αντιστρεπτές, εμφανίζονται για μη πορώδη ή μακροπορώδη προσροφητικά υλικά και αντιπροσωπεύει την ανεμπόδιστη μονοστρωματική και πολυστρωματική ρόφηση. Το σημείο B, το οποίο βρίσκεται στην αρχή του σχεδίου γραμμικού μεσοίματος της καμπύλης, σηματοδοτεί την ολοκλήρωση της μονοστρωματικής ρόφησης και την μετάβαση στην πολυστρωματική.

Οι αντιστρεπτές ισόθερμες τύπου III έχουν παραβολική μορφή ως προς τον άξονα της σχετικής πίεσης και δεν εμφανίζουν κάποιο σημείο B. Τέτοιου τύπου ισόθερμες απαντώνται σπάνια με χαρακτηριστικότερο παράδειγμα το σύστημα αζώτου σε πολυαιθυλένιο.

Οι ισόθερμες τύπου IV παρατηρείται βρόγχος υστέρησης, ο οποίος σχετίζεται με τη τριχοειδή συμπύκνωση που πραγματοποιείται στους μεσοπόρους καθώς και με τη περιορισμένη ροφητική ικανότητα σε υψηλές τιμές της σχετικής πίεσης. Γίνεται αντιληπτό ότι παρά την κάθετη τμήμα αυτής της ισόθερμης υφίσταται στην μονοστρωματική και πολυστρωματική ρόφηση, ακριβώς όπως του τύπου II. Πολλοί μεσοπορώδεις βιομηχανικοί προσροφητές παρουσιάζουν τέτοιου τύπου ισόθερμη.

Οι ισόθερμες τύπου V είναι αρκετά σπάνιες και συσχετίζονται με τις ισόθερμες τύπου III, όπου η αλληλεπίδραση ροφούμενου και ροφητή είναι ασθενής.

Τέλος, οι ισόθερμες τύπου VI αποτελούνται από διαδοχικά σκαλοπάτια, η κλίση των οποίων εξαρτάται από το σύστημα και τη θερμοκρασία. Τα σκαλόπατα υποδεικνύουν τη διαδοχική πολυστρωματική ρόφηση σε μια ομοιόμορφη μη πορώδη επιφάνεια. Το ύψος κάθε σκαλόπατου αντιπροσωπεύει τη μονοστρωματική χωρητικότητα κάθε στρώματος και παρατηρείται ότι παραμένει σταθερό για δύο ή τρία στρώματα. Το πιο χαρακτηριστικά συστήματα για αυτού του τύπου τις ισόθερμες
είναι αυτά που προκύπτουν με αργό ή κρυπτό σε γραφητοποιημένο άνθρακα σε θερμοκρασία υγρού αέρα.

Όπως αναφέρθηκε και παραπάνω, οι βρόγχοι υστέρησης στη φυσιορροφηση σχετίζονται συχνά με την τριχοειδή συμπύκνωση στις μεσοπορώδεις δομές. Βέβαια, η οι καμπύλες υστέρησης μπορεί να έχουν διαφορετικές μορφές και οι κυριότερες από αυτές εμφανίζονται στην Εικόνα 4.

Δύο ακραίες περιπτώσεις αποτελούν οι H1 και H4. Στη μεν H1 εμφανίζεται ένα σχεδόν κάθετο και ύστερα παράλληλο τμήμα για ένα σημαντικό διάστημα της ρόφησης του αερίου, ενώ στη δε H4 εμφανίζεται ένα οριζόντιο και ύστερα παράλληλο τμήμα για ένα μεγάλο εύρος της σχετικής πίεσης. Οι άλλες δύο περι-πτώσεις H2 και H3 μπορούν να θεωρηθούν ως ενδιάμεσες περιπτώσεις των δύο ακραίων. Ένα κοινό χαρακτηριστικό για τους βρόγχους υστέρησης είναι η εξάρτηση του απότομου τμήματος στον κλάδο της εκρόφησης. Έχει βρεθεί πως το τμήμα αυτό εξαρτάται κυρίως από τη φύση του ροφούμενου αερίου και όχι από τη φύση των πόρων του ροφητικού υλικού.

Παρότι, οι βρόγχοι υστέρησης δεν έχουν κατανοηθεί πλήρως μπορούν να χρησιμοποιηθούν για την εξαγωγή συμπερασμάτων σχετικά με τη δομή συγκεκριμένων πόρων.

Ο τύπος H1 σχετίζεται συχνά με πορώδεις πόρους που αποτελούνται από συσσωματώματα και έχουν στενή κατανομή μεγέθους των πόρων.

Ο τύπος H2 συναντάται συνήθως σε ανόργανες γέλες οξειδίων και σε γυάλινους πόρους αλλά σε αυτά τα συστήματα η κατανομή μεγέθους και το σχήμα των πόρων δεν είναι καλά ορισμένο.
Ο τύπος Η3 δεν εμφανίζει κανέναν περιορισμό στην προσρόφηση σε υψηλές τιμές της σχετικής πίεσης και συνήθως περιγράφει συσσωματώματα σωματιδίων σε σχήμα πλάκας.

Τέλος, ο τύπος Η4 περιγράφει συχνά στενούς σιγμοειδής πόρους.

Ειδική επιφάνεια

Ο προσδιορισμός της ειδικής επιφάνειας των πορωδών υλικών έχει επικρατήσει τις περισσότερες φορές για να γίνει αξιοποιώντας την μέθοδο ρόφησης των Brunauer – Emmett – Teller (BET). Πιο συγκεκριμένα, η ακόλουθη γραμμική μορφή της εξίσωσης BET χρησιμοποιείται για τους υπολογισμούς:

\[
\frac{p}{n^a \ast (p^o - p)} = \frac{1}{n^a_m \ast C} + \frac{(C - 1) \ast p}{n^a_m \ast C \ast p^o}
\]

Οπου: \(n^a \) είναι η ποσότητα που έχει ροφηθεί στη σχετική πίεση, \(n^a_m \) η μονοστρωματική χωρητικότητα και \(C \) εξαρτάται εκθετικά από την ενθαλπία της ρόφησης στο πρώτο ροφητικό στρώμα.

Σύμφωνα με την προηγούμενη σχέση, μπορεί να εξαχθεί γραμμική σχέση αν στους δύο άξονες τοποθετηθεί το \(\frac{p}{n^a \ast (p^o - p)} \) και το \(p/p^o \) (διάγραμμα BET). Από το διάγραμμα αυτό μπορεί να εξαχθεί η τιμή του \(n^a_m \), όμως η γραμμική περιοχή του διαγράμματος είναι περιορισμένη στην isόθερμο καμπύλη, συνήθως όχι πάνω από το \(p/p^o \approx 0,3 \).

Το επόμενο βήμα είναι ο υπολογισμός της ειδικής επιφάνειας \(A \), γνωστή και ως επιφάνεια BET, από το \(n^a_m \). Για τον υπολογισμό αυτό απαιτείται η γνώση της μέσης επιφάνειας \(a_m \), που καταλαμβάνει κάθε ροφημένο μόριο σε ένα συμπληρωμένο μονοστρωματικό επίπεδο. Έτσι, προκύπτουν οι εξής δύο εξισώσεις:

\[
A_s(BET) = n^a_m \ast L \ast a_m \text{ και }
\]

\[
\alpha_s(BET) = A_s(BET)/m
\]

Οπου: \(A_s(BET) \) και \(\alpha_s(BET) \) είναι η ολική και η ανηγμένη ειδική επιφάνεια αντίστοιχα του ροφητικού, \(m \) είναι η μάζα του και \(L \) η σταθερά Avogadro.

Το άζωτο θεωρείται ως το πλέον κατάλληλο αέριο ως ροφητικό για τον καθορισμό της ειδικής επιφάνειας και συχνά γίνεται η υπόθεση πως η μονοστρωματική διάταξη έχει πολύ συνεκτική διευθέτηση, δίνοντας \(a_m (N_2) = 0,162 \text{ nm}^2 \) στους 77 K.
Χρησιμοποιώντας αυτή την τιμή της μέσης επιφάνειας για τους υπολογισμούς της ειδικής επιφάνειας, τα αποτελέσματα που προκύπτουν για πληθώρα ροφητικών υλικών βρίσκονται σε απόκλιση περίπου 20% από την πραγματική τιμή. Προφανώς αυτές οι διαφορές μπορούν να αποδοθούν στη διαφορετική τιμή του a_m για κάθε πορώδες υλικό. Συνεπώς, το ιδανικό είναι να υπολογίσουμε το a_m κάθε φορά για μεγαλύτερη ακρίβεια.

Για την εξαγωγή ικανοποιητικών αποτελεσμάτων πρέπει να ληφθούν μετρήσεις σε τουλάχιστον τρία σημεία, ενώ η πραγματική τιμή είναι από πέντε και πάνω στο κατάλληλο εύρος πέσεων. Ακόμα, για να είναι η μέθοδος αξιόπιστη πρέπει να εξασφαλιστεί η μονοστρωματική και πολυστρωματική ρόφηση, χωρίς να συνοδεύεται από πλήρωση του μικροπορώδους. Πρέπει επίσης να αναφερθεί ότι η μέθοδος BET δε λαμβάνει υπόψη της την πλήρωση του μικροπορώδους ή την διείσδυση σε κοιλότητες μοριακού μεγέθους. Φαίνομαι για αυτό προκαλεί παραμόρφωσης της ισόθερμης καμπύλης στο τμήμα που αντιστοιχεί στην μονοστρωματική ρόφηση και όταν δεν παρατηρείται τριχοειδής συμπόνιση, ακολουθείται πολυστρωματική ρόφηση στη σχετικά μικρή εξωτερική επιφάνεια. Το αποτέλεσμα είναι η δημιουργία μιας ισόθερμης τύπου I, όμως η τιμή της ειδικής επιφάνειας που υπολογίζεται είναι λανθασμένη. [4]

1.5.3 Ηλεκτρονική μικροσκοπία σάρωσης (Scanning electron microscopy - SEM)

Η τεχνική αυτή χρησιμοποιείται ευρέως για να παρέχει αναλυτικά και ακριβή αποτελέσματα σχετικά με τη δομή, το μέγεθος και το σχήμα των πόρων. Το SEM αποτυπώνει εικόνες μέσω της καταγραφής διαφόρων σημάτων που προέρχονται από αλληλεπιδράσεις μιας ηλεκτρονικής δέσμης με το δείγμα. Μια δέσμη ηλεκτρονίων παράγεται από μία πηγή ηλεκτρονίων (συχνά αποκαλούμενο ως "ηλεκτρονικό όπλο") και εκπέμπεται από μια κεφαλή με μέγεθος από μερικά άνγκστρομ έως εκατοντάδες νανόμετρα. Η δέσμη αυτή καταλήγει στην επιφάνεια του δείγματος περνώντας μέσα από μια σειρά ηλεκτρο-μαγνητικών κατόπτρων. Η αντίδραση της κύριας δέσμης ηλεκτρονίων με το δείγμα δημιουργεί έναν αριθμό διαφορετικών σημάτων, όπως δευτερεύοντα ηλεκτρόνια που χρησιμοποιούνται για την τεχνική αξιολόγηση του δείγματος, ηλεκτρόνια που χρησιμοποιούνται για την ανάλυση δείγματος, ηλεκτρόνια που χρησιμοποιούνται για την εξέλιξη της σύστασης και της κρυσταλλικής δομής, ηλεκτρόνια που χρησιμοποιούνται για την ανάλυση δείγματος και πρωτόνια που υποδεικνύουν ήχο από τυχόν ακαθαρσίες στο δείγμα.
Το SEM δίνει εικόνες με διακριτή τρισδιάστατη δομή και με βάση κάποιους αλγορίθμους που βασίζονται στη διαφορά φωτεινότητας μπορεί να διακρίνει τους πόρους από την υπόλοιπη μάζα του υλικού. [3]

Στην επόμενη Εικόνα, παρουσιάζεται μια ανάλυση SEM σε δείγματα AlPO4-5 στα οποία μεταβαλλόταν ο χρόνος της ανάπτυξης των κρυστάλλων εντός του αυτόκλειστου.

Εικόνα 5 - Εικόνα SEM από δείγματα AlPO4-5 με διαφορετικούς χρόνους ανάπτυξης κρυστάλλων [5]

1.5.4 Περίθλαση ακτίνων X (X-Ray Diffraction)
Η τεχνική αυτή χρησιμοποιείται για την εξαγωγή πληροφοριών για την κρυσταλλικότητα ενός υλικού, με βάση την περίθλαση ακτινοβολίας συγκεκριμένου μήκους κύματος. Πέρα από τη δομή μπορεί να προσδιορίσει και τη σύσταση του δείγματος. Χρησιμοποιείται για στερεά οποιασδήποτε χημικής φύσης όπως απλές και σύνθετες χημικές ενώσεις, κράματα μετάλλων και ορυκτά, οργανικά μόρια και άλλα. Η ύπαρξη κρυσταλλικότητας είναι πολύ σημαντική καθώς, σε αντίθεση με τα άμορφα υλικά, εμφανίζονται καλά ορισμένες ιδιότητες όπως το σημείο τήξεως, η διαλυτότητα κ.α. Ακόμα, πρόκειται για μη καταστρεπτική μέθοδο. [6]

Το 1912 ο Max von Laue ανακάλυψε ότι τα κρυσταλλικά υλικά μπορούν να χρησιμοποιηθούν ως φράγμα περίθλασης για τις ακτίνες X και να δώσουν
τρισδιάστατη απεικόνιση. Περίθλαση ορίζεται ένα κυματικό φαινόμενο κατά το οποίο συμβαίνει μια φαινομενική κάμψη και διάδοση σε νέα διεύθυνση των κυμάτων, όταν αυτά συναντούν ένα αντικείμενο. Στη συγκεκριμένη τεχνική τα κύματα είναι οι ακτίνες X, οι οποίες παράγονται από "βομβαρδισμό" ενός μετάλλου – στόχου με ηλεκτρόνια υψηλής ενέργειας. Τα ηλεκτρόνια αυτά διεγείρουν τα ηλεκτρόνια του μετάλλου τα οποία αποσυνδέονται από τη μεταλλική επιφάνεια και παράγουν μονοχρωματικές ακτίνες X. Με τον όρο μονοχρωματικές περιγράφεται η ακτινοβολία με το ίδιο μήκος κύματος. Η ενέργεια των ακτίνων X είναι αρκετά υψηλή ώστε να μπορούν να διεισδύουν στη δομή αλλά χωρίς να προκαλούν χημικές μεταβολές σε αυτή. Ακόμα, τα μήκη κύματος των ακτίνων X είναι περίπου ίσα με τις αποστάσεις μεταξύ των ατόμων μέσα στον κρύσταλλο και έτσι μπορούν να ληφθούν πληροφορίες σχετικά και με το μέγεθος των κελιών. [7]

Σύμφωνα με τη θεώρηση του W.L. Bragg τα επίπεδα των κρυστάλλων αποτελούνται από παράλληλα διατεταγμένα άτομα. Τα κύματα που προσπίπτουν στα άτομα αυτά ανακλώνται κατοπτρικά, δηλαδή μόνο ένα μικρό μέρος της ακτινοβολίας ανακλάται. Επίσης, η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. Για να παρατηρηθεί περίθλαση πρέπει οι ανακλάσεις από τα επίπεδα του πλέγματος του ατόμου να συμβάλλουν εποικοδομητικά. Από τις ανακλώμενες ακτίνες αυτές που παρουσιάζουν ενδιαφέρον είναι αυτές που βρίσκονται σε φάση.

![Εικόνα 6 - Ανακλώμενες ακτίνες που βρίσκονται σε φάση](image)

Οι ακτίνες αυτές πρέπει να ικανοποιούν το νόμο του Bragg:

\[n\lambda = 2d \sin \theta \]

Οπου: n ακέραιος αριθμός, λ το μήκος κύματος των ακτίνων X, d η απόσταση μεταξύ των επιπέδων των ατόμων και θ η συμπληρωματική της γωνίας πρόσπτωσης.
Γίνεται λοιπόν αντιληπτό, ότι οι παράμετροι που μπορούν να μεταβληθούν είναι το μήκος κύματος λ και η γωνία πρόσπτωσης, ώστε κατ’ επέκταση η θ. Η πιο συνήθισμένη τεχνική ανάλυσης ονομάζεται μέθοδος κόνεως, αφού διατηρεί σταθερό το λ (μονοχρωματική ακτινοβολία) και μεταβάλει τη γωνία πρόσπτωσης. Για τη μέθοδο αυτή εάν ο κρύσταλλος είναι μεγάλων διαστάσεων πρέπει να αλεστεί σε σκόνη, της τάξης των μερικών nm. Εάν βρίσκεται ήδη σε αυτές τις διαστάσεις δεν χρειάζεται κάποια περαιτέρω επεξεργασία. Έτσι κάθε κόκκος θα συμπεριφέρεται ως ανεξάρτητος κρύσταλλος αλλά σίγουρα θα υπάρχουν και ομάδες που θα έχουν τον ίδιο προσανατολισμό. Φυσικά, με την τυχαία διευθέτηση μόνο συγκεκριμένου κόκκου θα ικανοποιούν την εξίσωση Bragg κάθε φορά που θα αλλάζει η γωνία πρόσπτωσης και θα δίνουν ανάκλαση. Με τη μέθοδο αυτή έχουμε μεταβολή μεταξύ της γωνίας πρόσπτωσης και της σκεδαζόμενης δέσμης (2θ). Συνεπώς, προκύπτουν επίπεδα με κάθε δυνατό προσανατολισμό και ο γεωμετρικός τόπος των σκεδαζόμενων δεσμών είναι ένας κώνος με κορυφή το δείγμα και άνοιγμα γωνίας 4θ για καθεμιά από τις γωνίες θετικής συμβολής.

Το διάγραμμα ακτίνων X που προκύπτει από έναν ενιαίο κρύσταλλο είναι οξεία κορυφή ενώ όταν αποτελείται από πολλούς μικρούς κρυστάλλους προκύπτει φαρδύτερη κορυφή. Προφανώς όταν πρέπει για πολύ-κρυσταλλικό υλικό δε θα προκύπτει μια μόνο κορυφή. Ανάλογα το εύρος της γραμμής και με τη βοήθεια της εξίσωσης Scherrer υπολογίζεται το μέγεθος του κρυστάλλου.

\[t = \frac{K \ast \lambda}{B \ast \cos \theta_B} \]

Όπου: τ διάμετρος κρυστάλλου, K σταθερά που εξαρτάται από το σχήμα του κρυστάλλου (0,89 για σφαίρα), λ μήκος κύματος ακτίνας X, Β εύρος γραμμής FWHM (Full Width at Half Max) και θB γωνία περίθλασης Bragg.

Συνοψίζοντας, λοιπόν μέσω του διαγράμματος XRD μπορούν να υπολογισθούν:

a) η απόσταση d μεταξύ των επιπέδων του κρυστάλλου με τη βοήθεια της εξίσωσης του Bragg

b) το μέγεθος των κρυσταλλικών σωματιδίων με τη βοήθεια της εξίσωσης Scherrer. [8]
Κεφάλαιο 2ο – Από την ανακάλυψη των ζεόλιθων στην ανάπτυξη αργιλοφωσφορικών μοριακών ηθμών και εφαρμογές αυτών

2.1 Εισαγωγή – Ζεόλιθοι

Με τον όρο ζεόλιθοι ορίζονται τα κρυσταλλικά αργιλοπυριτικά υλικά τα οποία διαθέτουν πόρους και κοιλότητες μοριακών διαστάσεων. Πολλοί από αυτούς συναντώνται ως φυσικά ορυκτά, αλλά υπάρχει μεγάλο επιστημονικό ενδιαφέρον στη σύνθεση τεχνητών υλικών, τα οποία χρησιμοποιούνται ευρέως στη βιομηχανία ως ροφητές, καταλύτες και για ιοντο-εναλλαγή. Ο εμπειρικός χημικός τύπος που μπορεί να περιγράψει τους ζεόλιθους είναι:

\[M_{2n}O \times Al_2O_3 \times ySiO_2 \times wH_2O \]

Οπου: το \(y \) είναι από 2 – 200, \(n \) το σθένος του κατιόντος και \(w \) υποδεικνύει το νερό που περιέχεται στα διάκενα του ζεόλιθου. Οι ζεολιθικοί κρύσταλλοι εμφανίζουν ανεξημένη κανονικότητα στη δομή και οι πόροι τους έχουν μέγεθος από 3 – 20 Å. Δομικά, προσομοιάζουν ανόργανα κρυσταλλικά πολυμερή με ένα απείρως εκτεινόμενο τρισδιάστατο και τετραεδρικό πλαίσιο. Η τετραεδρική διαμόρφωση προκύπτει από τη σύνδεση \(AlO_4 \) με \(SiO_4 \) με τη βοήθεια ατόμων οξυγόνου (γέφυρες οξυγόνου), έτσι ώστε τα άτομα οξυγόνου να βρίσκονται στις γωνίες κάθε τετραέδρου.

Εικόνα 7 - Τετραεδρική διαμόρφωση με τοποθέτηση μορίου \(Si/Al \) στο κέντρο & άτομα οξυγόνου στις γωνίες [9]

Όπως είναι αναμενόμενο, όταν το κεντρικό μόριο είναι \(Si^{4+} \) τα τέσσερα μόρια οξυγόνου εξισορροπούν τα φορτία και δημιουργείται ηλεκτρικά ουδέτερη δομή. Αντίθετα, όταν το κεντρικό μόριο είναι \(Al^{3+} \) τότε προκύπτει ένα αρνητικό φορτίο στο κρυσταλλικό δίκτυο. Για την εξισορρόπηση του αρνητικού αυτού φορτίου αξιοποιούνται είτε οργανικά ή ανόργανα κατιόντα που μπορεί να βρεθούν στους πόρους και τα διάκενα των υλικών. Τα κατιόντα αυτά είναι αρκετά ευκίνητα και συχνά υποβοηθούν την ιοντο-
εναλλαγή. Βέβαια, η παρουσία των κατιόντων αυτών αυξάνει τις ηλεκτροστατικές δυνάμεις και ενισχύει τον υδρόφιλο χαρακτήρα των ζεόλιθων. Στις περιπτώσεις, λοιπόν, που δεν προκύπτει ουδέτερη ηλεκτρονιακή δομή παρατηρείται προσφόρηση μορίων νερού με αποτέλεσμα την πλήρωση των πόρων των ζεόλιθων. Μια πιθανή εφαρμογή λόγω αυτής της ιδιότητας είναι η ξήρανση διαλυμάτων, όπου τα μόρια νερού συγκρατούνται ενώ τα υπόλοιπα εξέρχονται από τον ζεόλιθο. [9]

Για την πιο κατανοητή απεικόνιση της τρισδιάστατης διαμόρφωσης των ζεόλιθων συνήθως παραλείπονται τα άτομα πυριτίου και αργιλίου και παρουσιάζεται μια πιο απλοποιημένη σχηματική απεικόνιση, όπως στην Εικόνα 8b. Οι ευθείες γραμμές αναπαριστούν τις γέφυρες οξυγόνου ενώ στις γωνίες βρίσκονται τοποθετημένα τα μόρια αργιλίου ή πυριτίου.

Η δομική μονάδα του Ζεόλιθου A ουσιαστικά είναι ο σοδαλίτης (Εικόνα 8a), ο οποίος εμφανίζει δύο επιφάνειες εισόδου, μια τετραγωνική και μια εξαγωνική. Ο σοδαλίτης μπορεί να συνδεθεί με διαφορετικούς τρόπους και έτσι να προκύψουν διάφορες δομές ζεόλιθων. Για το λόγο αυτό ο σοδαλίτης ανήκει στις δευτερεύουσες δομικές μονάδες (secondary building units – SBU’s), οι οποίες όταν συνδυαστούν κατάλληλα δημιουργούν την τελική δομή των ζεόλιθων. Μέχρι το 2007 έχουν καταγραφεί 176 διαφορετικές δομές ζεόλιθων και υπεύθυνος για την καταγραφή τους είναι ο Παγκόσμιος Σύλλογος Ζεόλιθων (International Zeolite Association – IZA) [11]. Η διάκριση των ζεόλιθων με βάση το μέγεθος των πόρων είναι πολύ σημαντική και εξαρτάται άμεσα από το μέγεθος του δακτυλίου, το οποίο καθορίζεται από τον αριθμό των τετραεδρικών ατόμων που σχηματίζουν την εγκάρσια διατομή των τοιχωμάτων του πόρου. Έτσι, προκύπτουν τέσσερις βασικές κατηγορίες:
2.2 Ιστορική αναδρομή των κρυσταλλικών πορωδών υλικών
Η πρώτη αναφορά στους ζεόλιθους έγινε το 1756 από τον Σουηδό, Baron Axel Fredrik Cronstedt, ο οποίος ήταν ορυκτολόγος και χημικός ευρύτερα γνωστός ως αυτός που ανακάλυψε και ταυτοποίησε το νικέλιο. Ο πρώτος ορυκτός ζεόλιθος που ανακαλύφθηκε ήταν ο στιλβίτης, σύμφωνα με τις περιγραφές και τα χαρακτηριστικά που είχε καταγράψει. Η πιο χαρακτηριστική του ιδιότητα ήταν η διόγκωση του όταν θερμαινόταν και έτσι προήλθε και η ονομασία του ζεόλιθου, από τα συνθετικά ξέω και λίθος. Στην συνέχεια, πολλοί ακόμα φυσικοί ζεόλιθοι ανακαλύφθηκαν κυρίως από Σουηδούς και Γάλλους ερευνητές, χωρίς όμως να μπορέσουν να εξηγήσουν το φαινόμενο της διόγκωσης που παρατηρούσαν. Όλοι αυτοί οι φυσικοί ζεόλιθοι ανακαλύφθηκαν σε κοιλότητες ταμιευτήρων πετρωμάτων, όπως ο βασάλτης (basalt). Είχαν τη μορφή συσσωματωμάτων καλά ορισμένων κρυστάλλων με διαστάσεις από μερικά χιλιοστόμετρα έως εκατοστά και προέρχονταν από μαγματικό διαλύματα.
Από το 1777 μέχρι τις αρχές του 1800 έχαν ήδη γίνει γνωστές κάποιες από τις ιδιότητες των ζεόλιθων, όπως η προσρόφηση, η εναλλαγή κατιόντων και η αφυδάτωση. Παρά τις σημαντικές αυτές ιδιότητες, τα υλικά αυτά δεν παρουσιάζονταν κάποια πρακτική χρήση εκείνη την περίοδο αλλά χρησίμευαν μόνο για το χαρακτηρισμό του πετρώματος στο οποίο βρέθηκαν – ηφαιστειακής προέλευσης ή μη. [12] Το 1925 οι Weigel και Steinhoff ανέφεραν για πρώτη φορά τη χρήση των ζεόλιθων ως μοριακά κόσκινα (molecular sieves). Με τον όρο μοριακά κόσκινα ορίζονται τα πορώδη στερεά που διαθέτουν πόρους σε μέγεθος μοριακών διαστάσεων, από 0,3 – 2 nm σε διάμετρο. Έτσι, μπορούν να πραγματοποιήσουν διαχωρισμούς βάσει του σχήματος και του μεγέθους των μορίων. Τέτοιους διαχωρισμούς μπορούν να πραγματοποιήσουν οι ζεόλιθοι, οι άνθρακες και μερικά οξείδια. Στην πράξη, σήμερα, οι ζεόλιθοι αποτελούν τους κύριους εκπρόσωπους των μοριακών κοσκίνων. Βέβαια,
ήταν επτά χρόνια αργότερα, το 1932, όταν ο McBain εδραίωσε τον όρο "μοριακά κόσκινα" για την περιγραφή των στερών πορωδών υλικών που χρησιμοποιούνται για μοριακούς διαχωρισμούς.

Έτσι, μέχρι τα μέσα της δεκαετίας του 1940 είχαν καταγραφεί στη βιβλιογραφία οι ιδιότητες ιοντο-εναλλαγής, προσρόφησης, μοριακού διαχωρισμού καθώς και οι μορφολογικές ιδιότητες των ορυκτών ζεόλιθων. Επίσης, υπάρχουν και κάποιες αναφορές για σύνθεση ζεόλιθων, όπως η υδροθερμική σύνθεση του λεβυνίτη (levynite) το 1862 από τον χημικό St. Claire Deville. Βέβαια, ο ελλιπής χαρακτηρισμός και η δυσκολία για αναπαραγωγή της πειραματικής διαδικασίας δημιούργηκε κάποια αβεβαιότητα για τις συνθέσεις αυτές.

Οι γνωστές μέχρι τότε ιδιότητες των ζεόλιθων προσέλκυσαν το ενδιαφέρον της βιομηχανίας και για αυτό οι έρευνες για φυσικούς ζεόλιθους ενισχύθηκαν αρκετά εκείνη την περίοδο. Για τη χρήση σε βιομηχανικές αντιδράσεις η καθαρότητα των υλικών ήταν προ απαιτούμενη όμως οι ποσότητες δεν επαρκούσαν για να καλύψουν τη ζήτηση. Πράγματι βρέθηκαν κάποια μεγάλα κοιτάσματα σε χώρες όπως η Ιαπωνία, η Ιταλία, η Αμερική κ.α, κυρίως κοντά σε ηφαιστειακές περιοχές. Έγινε γρήγορα κατανοητό, ότι οι φυσικοί ζεόλιθοι εμφανίζουν ασυνέχειες στη σύσταση τους ή έλλειψη καθαρότητας και για αυτό δεν ήταν ιδιαίτερα αποτελεσματική η χρήση τους ως ροφητές σε βιομηχανικές διεργασίες.

Αυτός ήταν και ο λόγος για τον οποίο στα μέσα του 1930 ξεκίνησε το πρωτοποριακό έργο του Richard M. Barrer πάνω στη σύνθεση ζεόλιθων και τις εφαρμογές τους στη ρόφηση. Αρχικά, το 1945 πραγματοποίησε την πρώτη κατηγοριοποίηση των έως τότε γνωστών ζεόλιθων με βάση το μοριακό τους μέγεθος, ενώ το 1948 σημειώνεται η πρώτη διαπιστευμένη σύνθεση ζεόλιθων. Οι δημοσιεύσεις του υποδεικνύουν τη σύνθεση του ανάλογου του ορυκτού μορδενίτη (mordenite) καθώς και μιας νέας δομής, η οποία αργότερα αναγνωρίστηκε ως η δομή KFI. Στις συνθέσεις του Barrer ήταν χαρακτηριστικές οι υψηλές θερμοκρασίες που εφάρμοσε, 200 °C και μεγαλύτερες. Την ίδια περίοδο, η έρευνα του Barrer οδήγησε τον Robert M. Milton από την Linde, μέλος του ομίλου Union Carbide, να μελετήσει τους ζεόλιθους με σκοπό τον διαχωρισμό και εξευγενισμό του αέρα. Το έργο του Milton απέφερε ένα σημαντικό αριθμό βιομηχανικών ζεόλιθων, όπως τους ζεόλιθους A, X και Y, και η Union Carbide προχώρησε στην εμπορική εκμετάλλευση αυτών των υλικών. Έτσι, το 1959
εμφανίστηκε για πρώτη φορά η διεργασία ISOSIV, η οποία διαχωρίζει τις κανονικές ισοπαραφίνες με τη βοήθεια του ζεόλιθου Α υποκατεστημένο από Ca²⁺. Το 1962 η Mobil Oil χρησιμοποίησε για πρώτη φορά τον συνθετικό ζεόλιθο X ως καταλύτη για να πραγματοποιήσει πυρόλυση (cracking) στους υδρογονάνθρακες. Μέχρι το 2008 έχει υπολογιστεί ότι έχουν χρησιμοποιηθεί περίπου 367.000 τόνοι ζεόλιθου Y για την πραγματοποίηση καταλυτικής πυρόλυσης. [12, 13]

Για την περαιτέρω εξέλιξη των ζεόλιθων βασίστηκαν στην αυξημένη συγκέντρωση πυριτίου σε σχέση με το αργίλιο. Στη γενική περίπτωση όταν ο λόγος Si/Al αυξανόταν τότε παρατηρούσαν αυξημένη θερμική σταθερότητα και υδρόφοβη δομή. Τέτοιου τύπου ζεόλιθοι χρησιμοποιούνται για τον διαχωρισμό οργανικών μορίων από υδατικά ρεύματα και για να καταλύουν αντιδράσεις παρουσία νερού. Ακόμα, η συγκέντρωση κατιόντων μειώνοταν και υπήρχε μειωμένη ικανότητα ιοντο-εναλλαγής. Αντίθετα, όταν ο λόγος Si/Al έπαιρνε χαμηλές τιμές τότε προέκυπτε υψηλά υδρόφιλο υλικό. Οι έρευνες αυτές οδήγησαν στη δημιουργία υλικών ακόμα και χωρίς αργίλο και χωρίς καθόλου αργίλο. Όπως ο σιλικαλίτης (silicalite).

Παράλληλα με τις προσπάθειες για αύξηση του ποσοστού του πυριτίου στις δομές των ζεόλιθων πραγματοποιούταν και έρευνα για τη δημιουργία μοριακών ηθμών στους οποίους το πυρίτιο θα έχει υποκατασταθεί από κάποιο άλλο στοιχείο. [14]

Το 1982, ανακοινώθηκε μια σημαντική ανακάλυψη από τον Wilson και τους συνεργάτες του στα εργαστήρια της Union Carbide. Αυτή δεν ήταν άλλη από τη δημιουργία των αργιλοφωσφορικών (Aluminophosphates – AIPO’s) μοριακών ηθμών, δηλαδή δομές οι οποίες αποτελούνταν από αργίλο και φώσφορο αυτή τη φορά.
2.3 Δομή και ιδιότητες αργιλοφωσφορικών μοριακών ηθμών
Η επιτυχής αντικατάσταση του πυριτίου από το φώσφο ήταν αποτέλεσμα μακροχρόνιας έρευνας και η παρακάτω σύγκριση θα βοηθήσει να αναδειχθούν τα κύρια σημεία της επιτυχίας αυτής.

- Τα μόρια του Al^{3+} και του P^{5+} (0,28 Å) έχουν παρόμοια ατομική ακτίνα με αυτή του πυριτίου (0,26 Å)
- Τα μόρια του Al^{3+} και του P^{5+} προσανατολίζονται κυρίως τετραεδρικά με τα άτομα του οξυγόνου
- Τα AlPO^{+}s και το SiO_2 (δομή quartz) έχουν τον ίδιο αριθμό ηλεκτρονίων [15]

Τα υλικά αυτά ανήκουν επίσης στα μικροπορώδη αφού οι δομές που έχουν αναπτυχθεί έχουν πόρους μέχρι 2 nm. Η δομή τους εμφανίζεται στην ιδία πρότυπα με αυτή των ξεδόλθων, με τη διαφορά ότι το τρισδιάστατο και τετραεδρικό δίκτυο αυτή τη φορά αποτελείται από εναλλασσόμενα μόρια Al^{3+} και P^{5+} συνδεδεμένα με τη βοήθεια μορίων οξυγόνου. Επίσης, οι δεσμοί $\text{Al}-\text{O}-\text{Al}$ δεν εμφανίζονται, σύμφωνα με τον νόμο του Löwenstein, καθώς και οι δεσμοί $\text{P}-\text{O}-\text{P}$, οι οποίοι οδηγούν σε όμοιους δακτυλίους στη δομή. [12, 16]

Το ιδιαίτερο γνώρισμα των AlPO^{+}s είναι η σταθερή και ίση με τη μονάδα αναλογία του αργιλίου προς το φώσφο ($\text{Al}/\text{P} = 1$). Ο σταθερός αυτός λόγος παράγει υλικά τα οποία δεν έχουν ηλεκτρικές φορτίσεις – ουδέτερες δομές (neutral frameworks). Αυτό σημαίνει ότι δεν έχουν τη δυνατότητα να εναλλάσσουν κατιόντα ή ανιόντα. Ο γενικός μοριακός τύπος που μπορεί να περιγράψει τους αργιλοφωσφορικούς μοριακούς ηθμούς είναι:

$$x\text{R} \cdot \text{Al}_2\text{O}_3 \cdot 1.0 \pm 0.2 \text{P}_2\text{O}_5 \cdot y\text{H}_2\text{O}$$

Όπου R είναι μια αμίνη ή τεταρτοταγές αμμωνιακό άλας, που χρησιμοποιείται ως οργανικός μορφοποιητής πλέγματος (Structure Directing Agent – SDA).

Ακόμα, γίνεται φανερή η ισομοριακή ποσότητα αργιλίου και φώσφορου που χρησιμοποιείται για τη σύνθεση των AlPO^{+}s. [13]

Για την περιγραφή των AlPO^{+}s χρησιμοποιείται ο γενικός χημικός τύπος $\text{AlPO}-n$, όπου το n είναι χαρακτηριστικό για κάθε διαφορετική δομή. Στην Εικόνα 9 παρουσιάζεται το $\text{AlPO}-18$, στο οποίο οι πόροι δημιουργούνται από 8-μελείς δακτυλίους και ανήκει
στα υλικά με τοπολογία ΑΕΙ. Γίνεται λοιπόν καλύτερα κατανοητή η ενάλλαγή των μορίων Al³⁺ και P⁵⁺ καθώς και οι γέφυρες οξυγόνου που συγκρατούν το όλο δίκτυο.

Εικόνα 9 - A IPO-18 με τοπολογία ΑΕΙ [17]

Μέχρι σήμερα έχουν αναφερθεί 53 διαφορετικές δομές αργιλοφωσφορικών μοριακών ηθμών, από τις οποίες οι 18 είναι ανάλογα των ζεόλιθων. Για την κατηγοριοποίηση των A IPO υπεύθυνη είναι και πάλι η IZA, στην οποία αναφέρονται όλες οι καινούριες δομές αλλά και αυτές που είναι ανάλογα των αργιλουπριτικών δομών.

Οι χαρακτηριστικές ιδιότητες των A IPO’s είναι οι εξής:

- Ουδέτερο δίκτυο (Al/P=1) το οποίο δεν δημιουργεί οξίνες θέσεις, συνεπώς είναι μειωμένη η δυνατότητα ιοντο-εναλλαγής καθώς και οι οξίνες καταλυτικές ιδιότητες
- Ασθενώς υδρόφιλες δομές
- Αυξημένες ροφητικές ιδιότητες, μετά την απομάκρυνση του οργανικού υποστρώματος (SDA)
- Εξαιρετική θερμική σταθερότητα, μέχρι 1000 °C σε θερμότητα και μέχρι 600 °C σε ατμούς
- Μεγάλη ελαστικότητα κατά μήκος των δεσμών και των γωνιών των δεσμών
- Μεγάλη ποικιλομορφία στις δομές και μεγάλο εύρος στο μέγεθος και τον όγκο των πόρων [13, 14]
2.4 Μεταλλικά υποκατεστημένα αργιλοφωσφορικά υλικά

Υπάρχουν τρεις κατηγορίες μεταλλικών υποκαταστάσεων που μπορούν να πραγματοποιηθούν:

1) Μονοσθενή, δισθενή και τρισθενή στοιχεία (Me$^{1+}$, Me$^{2+}$, Me$^{3+}$) υποκαθιστούν το Al$^{3+}$, σχηματίζοντας Με-Ο-P δεσμούς
2) Στοιχεία με σθένος 4+ και 5+ υποκαθιστούν το P$^{5+}$, σχηματίζοντας Me-Ο-Al δεσμούς
3) Το πυρίτιο (Si$^{4+}$) είναι το μόνο στοιχείο το οποίο μπορεί να υποκαταστήσει το Al$^{3+}$ ή/και το P$^{5+}$, σχηματίζοντας τα SAPO$^{\prime}$s [18]

Είναι λογικό η ενσωμάτωση μετάλλων να προκαλέσει τροποποιήσεις στη διαμόρφωση των υλικών αυτών. Αρχικά, η ενσωμάτωση στοιχείων μετάπτωσης στο δίκτυο των αργιλοφωσφορικών μοριακών ηθμών μπορεί να προκαλέσει αύξηση του όγκου των μοριακών κελιών υποθέτοντας πως η συμμετρία παραμένει σταθερή. Βέβαια, κάποιες φορές η προσαύξηση αυτή μπορεί να είναι πολύ μικρή και να θεωρηθεί αμελητέα, στα πλαίσια του πειραματικού σφάλματος.

Η πιο σημαντική τροποποίηση που μπορεί να πραγματοποιηθεί στα MeAPO’s είναι η εμφάνιση αρνητικού ηλεκτρικού φορτίου. Αυτό μπορεί να συμβεί σε δύο περιπτώσεις: α) υποκατάσταση του Al$^{3+}$ από μονοσθενή ή δισθενή μέταλλα και β) υποκατάσταση του P$^{5+}$ από τετρασθενή μέταλλα. Οι υποκαταστάσεις αυτές οδηγούν σε πλεόνασμα αρνητικού φορτίου το οποίο όμως πρέπει να εξισορροπηθεί. Για την εξισορρόπηση των φορτίων αυτών αξιοποιούνται τα κατιόντα που βρίσκονται στο οργανικό υπόστρωμα. Τα ευκίνητα αυτά κατάλληλα αντισταθμίζουν το αρνητικό φορτίο και παράλληλα δημιουργούν οξυντικές θέσεις (acidic sites) στη δομή του AlPO. Με την ενσωμάτωση αυτών των μετάλλων, λοιπόν, οι καταλύτες αποκτούν οξύνες ιδιότητες και μπορούν να χρησιμοποιηθούν για οξύνες-καταλυτικές αντιδράσεις. Ακόμα, οι μετακινήσεις των ιόντων αυτών ενισχύουν τις ηλεκτροστατικές δυνάμεις με αποτέλεσμα τα μόρια του
νερού να έλκονται στο εσωτερικό των πόρων και να προσφέρονται. Ετσι προκύπτουν υδρόφιλες δομές και η ιδιότητα ιοντο-εναλλαγής ενισχύεται. [12]

Ιδιαίτερη περίπτωση αποτελεί το πυρίτιο το οποίο με βάση τα παραπάνω, μπορεί να δημιουργήσει ζίζες θέσεις στο αργιλοφωσφορικό μοριακό ηθμό, υποκαθιστώντας τον P^5+ αλλά μπορεί να υποκαταστήσει ταυτόχρονα και μόρια Al^{3+}. Ο μηχανισμός δημιουργίας του αρνητικού φορτίου ονομάζεται SM2 και περιλαμβάνει την υποκατάσταση του P^5+ από το Si^{4+}. O μηχανισμός υποκατάστασης του Al^{3+} ονομάζεται SM1, αλλά ενεργειακά δεν ευνοείται και δεν έχει παρατηρηθεί πειραματικά. Ο τρίτος μηχανισμός, SM3, περιλαμβάνει την ταυτόχρονη υποκατάσταση του P^5+ και του Al^{3+}. Εάν η διπλή υποκατάσταση είναι ισόποση, τότε η δομή που θα προκύψει θα είναι και πάλι ουδέτερη με αποτέλεσμα το SAPO να μην εμφανίζει καμία από τις προαναφερθείσες ιδιότητες. Οι δομές αυτές ονομάζονται silicon islands και προσομοιάζουν τη διαμόρφωση των σιλικαλίτων. [19]

Οι τρεις κατηγορίες μεταλλικών υποκαταστάσεων μπορούν να γίνει καλύτερα αντιληπτές με τη βοήθεια της Εικόνας 10.

Εικόνα 10 - Κατηγορίες υποκατάστασης αργιλίου και φωσφόρου από μέταλλα [20]

Όσον αφορά τα SAPO’s εμφανίζουν και αυτά μεγάλη ποικιλομορφία ως προς τις δομές και τη σύσταση με αποτέλεσμα να έχουν αναφερθεί 16 διαφορετικές μικροπορώδεις δομές, 8 από τις οποίες ήταν άγνωστες μέχρι τότε. Ακόμα, παρουσιάζουν και αυτά εξαιρετική θερμική σταθερότητα.

Τα MeAPO’s συγκρινόμενα με τις υπόλοιπες δομές, εμφανίζουν ελαφρώς μειωμένη θερμική σταθερότητα. [13]
2.5 Μέθοδοι σύνθεσης AlPO
Η κρυστάλλωση των πορωδών αργιλοφωσφορικών υλικών πραγματοποιείται από ένα ένυδρο πρόδρομο μίγμα, στο οποίο καθοριστικό ρόλο διαδραματίζει ο έλεγχος της μολαρικής αναλογίας καθώς και ο τύπος των αντιδρών. Στη διεργασία της σύνθεσης συμμετέχουν και άλλοι παράγοντες όπως ο χρόνος ορίμανσης και η θερμοκρασία.

2.5.1 Υδροθερμική μέθοδος
Η συμβατική μέθοδος για τη σύνθεση των αργιλοφωσφορικών μοριακών ηθμών βασίζεται σε αυτή που χρησιμοποίησε πρώτος ο R. Milton για την παρασκευή των συνθετικών ζεόλιθων και ονομάζεται υδροθερμική. Η διαδικασία σύνθεσης μπορεί να διαρκέσει από μερικές ώρες έως και μέρες και η θερμοκρασία σύνθεσης κυμαίνεται από 100 – 250 °C. Το πρόδρομο διάλυμα στην ουσία αποτελείται από μια ένυδρη γέλη, στην οποία περιέχονται οι πηγές αλουμινίου, φωσφόρου καθώς και ένας οργανικός μορφοποιητής πλέγματος (structure directing agent), συνήθως κάποια οργανική τασιερνεργός ένωση. Οι πιο συνηθισμένες ενώσεις που χρησιμοποιούνται είναι οι αμίνες ή η ταταρτοταγή αμμωνιακά άλατα. Η ρύθμιση του pH είναι ιδιαίτερα σημαντική για τη υδροθερμική σύνθεση και διαφέρει ανάλογα τη δομή που πρόκειται να παρασκευαστεί. Συνήθως η τιμή του pH κυμαίνεται μεταξύ 3 – 10. Για τη σύνθεση των AlPO’s οι κύριες πηγές αλουμινίου που έχουν χρησιμοποιηθεί εκτενώς είναι ο ψευδο-μποεμίτης (pseudoboehmite) και το ισοπροποξείδιο του αργιλίου (aluminum isopropoxide). Αντίστοιχα, για το φώσφορο είναι το ορθοφωσφορικό οξύ (orthophosphoric acid). Για τη σύνθεση των SAPO’s έχουν χρησιμοποιηθεί όλες οι δυνατές μορφές πυρίτιου, όπως κολλοειδής, ιζηματοειδής (precipitated) και πυρογενική (pyrogenic / fumed). Η δημιουργία MeAPO’s περιλαμβάνει την προσθήκη ενός υδατοδιαλυτού άλατος στο αντιδρών μίγμα. [15, 21]
Η μέθοδος σύνθεσης των AlPO’s αποτελείται από τα εξής στάδια:

1) Εξουδετέρωση της πρόδρομης ένωσης αργιλίου, η οποία έχει διασπαρεί σε νερό, από μια κατά προσέγγιση ισομοριακή ποσότητα φωσφορικού οξέος ώστε να προκύψει η γέλη AlPO₄

2) Ωρίμανση της δραστικής γέλης, υπό συνεχή ανάδευση (aging)

3) Προσθήκη της κατάλληλης οργανικής ένωσης και δημιουργία του πρόδρομου διαλύματος (precursor solution)

4) Ωρίμανση του πρόδρομου διαλύματος, εάν κρίνεται απαραίτητο

5) Υδροθερμική κατεργασία του διαλύματος εντός αυτοκλείστου, σε αυτογενείς πιέσεις [22]

![Diagram](image-url)

Εικόνα 11 - Σχηματική αναπαράσταση υδροθερμικής σύνθεσης [23]

2.5.2 Σύνθεση με μικροκύματα

Μια νέα και πρωτοποριακή τεχνική έχει εφαρμοσθεί σε αρκετές περιπτώσεις, σύμφωνα και με τη βιβλιογραφία [24-26], για τη σύνθεση αργιλοφωσφορικών μοριακών ηθμών. Η μέθοδος αυτή περιλαμβάνει την υδροθερμική σύνθεση με την αξιοποίηση της ακτινοβολίας μικροκυμάτων (microwave radiation). Το μεγαλύτερο πλεονέκτημα αυτής της μεθόδου είναι ο μικρότερος χρόνος που απαιτείται για τη σχηματισμό των κρυσταλλικών πορωδών υλικών. Πιο συγκεκριμένα, ο χρόνος κρυστάλλωσης μειώνεται από μέρες σε μερικά λεπτά δίνοντας έτσι τη δυνατότητα για τη σύνθεση πολλών υλικών σε μικρό χρονικό διάστημα. Χαρακτηριστικό παράδειγμα αποτελεί η σύνθεση των MnAPO-5 και MnSAPO-5, η οποία επιτελείται σε τριάντα μόλις λεπτά. Μια πιθανή εξήγηση για την επιτάχυνση της σύνθεσης του AlPO₄-5 βασίζεται στο ότι τα μικροκύματα καταστρέφουν τις γέφυρες υδρογόνου που υπάρχουν στα μόρια νερού.
Έτσι πραγματοποιείται τάχιστη διάλυση της γέλης και σχηματίζονται οι δομικές μονάδες Al-O-P. Ο σχηματισμός του πρώτου μεγάλου κρυστάλλου AlPO₄-5 πραγματοποιείται μόλις μετά από 60 δευτερόλεπτα. Ακόμα, ένα πλεονέκτημα της μεθόδου αυτής είναι η αυξημένη καθαρότητα φάσης. Ουσιαστικά, δεν παρατηρείται ο σχηματισμός ενδιάμεσων φάσεων αφού η σύνθεση αφθαίρεται ταχύτατα προς το σχηματισμό της δομής AlPO₄. Τέλος, μια ιδιότητα πολύ σημαντική για την εφαρμογή των AlPO₄’s ως ροφητών είναι η δημιουργία σωματιδίων με στενή κατανομή μεγέθους (narrow particle size distribution). Έτσι, τα μοριακά κόσκινα που συντίθενται με μικροκύματα έχουν όλα παραπλήσιες διαστάσεις και μεγέθη πόρων με αποτέλεσμα να εμφανίζουν και τις ίδιες ιδιότητες κατά τη ρόφηση. Μια επιπλέον σημαντική ιδιότητα της σύνθεσης με μικροκύματα είναι ότι η θέρμανση πραγματοποιείται με ακτινοβολία και είναι συνεχής. Δεν επηρεάζεται από το πάχος, το είδος του υλικού και άλλους παράγοντες που υπεισέρχονται στην μεταφορά θερμότητας με συναγωγή. [19, 21]

2.6 Ρόλος του οργανικού μορφοποιητή πλέγματος
Οπως έχει αναφερθεί και στις προηγούμενες παραγράφους ο οργανικός μορφοποιητής πλέγματος (Structure Directing Agent – SDA) είναι συνήθως μια αμίνη ή ένα τεταρτοταγές αμμωνιακό άλας. Η χρησιμότητα αυτού του αντιδραστηρίου έγκειται στο σχηματισμό του πορώδους στο κρυσταλλικό υλικό, ώστε να μπορεί να αξιοποιηθεί για όλες τις εφαρμογές που αναφέρθηκαν προηγουμένως και απαιτούν το μικροπορώδες δίκτυο των AlPO’s.

Στην αρχή, υπήρχε η άποψη πως λειτουργούσαν μόνο ως πληροφορικικές (space fillers) μεταξύ των δομικών κελιών Al-O-P που δημιουργούνται στις διάφορες δομές. Αυτή η ιδέα αναθεωρήθηκε όταν διαπιστώθηκε ότι διαφορετικοί μορφοποιητές μπορούν να παράγουν το ίδιο υλικό, πχ το AlPO₄-5 συντίθεται από 25 διαφορετικούς μορφοποιητές, αλλά και ο ίδιος μορφοποιητής μπορεί να παράγει διαφορετικές κρυσταλλικές δομές, πχ η δι-προπυλαμίνη [di-\text{propylamine} (Pr₂NH)] μπορεί να συνθέσει τουλάχιστον δέκα διαφορετικά AlPO’s: AlPO₄-11, -31, -39, -41, -43, -46, -47, -50. Έτσι, έγινε κατανοητό ότι ο οργανικός μορφοποιητής εμφανίζει κάποια αλληλεπίδραση και με το υπόλοιπο πλέγμα το οποίο αναπτύσσεται. Η ιδιότητα αυτή εισήγαγε την ιδέα ότι οι μορφοποιητές έχουν την ιδιότητα σχηματισμού δομής (structure-directing effect) και είναι υπεύθυνοι για τη δημιουργία πολλών κελιών νανοκλίμακας. Μια τρίτη προσέγγιση αφορά την άμεση αλληλεπίδραση μεταξύ
μορφοποιητή και πλέγματος κατά τη σύνθεση του κρυσταλλικού πλέγματος (true templating). [19, 21, 27]

Παρά τις τρεις προηγούμενες προσεγγίσεις ακόμα και σήμερα δεν είναι απολύτως κατανοητός ο τρόπος με τον οποίο ο οργανικός μορφοποιητής πλέγματος εξασφαλίζει το μικροπορώδες των δομών. Μια προσπάθεια ορισμού της μορφοποίησης (templating) έχει δοθεί από τους Lok et al και περιγράφεται ως: “το φαινόμενο που πραγματοποιείται κατά τη γελοποίηση (gelation) ή την πυρήνωση και στο οποίο τα οργανικά μόρια οργανώνουν τα τετράεδρα στον κατάλληλο γεωμετρικό προσανατολισμό ώστε να σχηματιστούν το αρχικό δομικό κελί για τη δομή που συντίθεται”. [28, 29]

Υπάρχουν πολλές αναφορές που παρουσιάζουν πως η αύξηση της συγκέντρωσης του μορφοποιητή ευνοεί τη δημιουργία της αποκλειστικά κρυσταλλικής φάσης του AIPO. Για παράδειγμα έχει βρεθεί για το AIPO₄·5 πως χρησιμοποιώντας συντελεστές μοριακών αναλογιών του αντιδρόντος μίγματος σε αμίνη χ =1, 1,25, 1,50 και 1,75 ο χρόνος για τη σύνθεση κρυσταλλικού προϊόντος σε ποσοστό 100% είναι 180, 120, 90 και 45 λεπτά, αντίστοιχα. Ακόμα, κρίνεται πολύ σημαντική η χημεία της γέλης αφού ο μορφοποιητής φαίνεται να λειτουργεί μόνο σε ένα συγκεκριμένο εύρος pH. [30]

Δύο πολύ σημαντικές ιδιότητες που προσφέρει ο οργανικός μορφοποιητής στη δομή των AIPO’s είναι η αυξημένη θερμοδυναμική σταθερότητα του σύνθετου πλέγματος/οργανικού μορφοποιητή καθώς και η εξισορρόπηση των φορτίων σε ανιονικά πλέγματα.[28]

Ιδιαίτερη προσοχή χρειάζεται στην απομάκρυνση του μορφοποιητή από τη κρυσταλλική πλέγμα αφού αυτό έχει σχηματιστεί, διότι μπορεί να προκληθεί κατάρρευση της δομής. Η πιο συνηθισμένη τεχνική περιλαμβάνει την πύρωση (calcination) της δομής σε υψηλές θερμοκρασίες. Η θερμοκρασία πρέπει να είναι αρκετά υψηλή ώστε να μπορέσει το οργανικό υπόστρωμα να εξέλθει από την κρυσταλλική δομή αλλά πρέπει να μην υπερβαίνει και τη θερμοκρασιακή αντοχή του AIPO, γεγονός που θα οδηγούσε στην καταστροφή της δομής. Παράλληλα, αφαιρούνται και όποια μόρια νερού υπάρχουν εγκλωβισμένα εντός του κρυσταλλικού πλέγματος. Στην Εικόνα 13a παρουσιάζεται το παράδειγμα του AIPO-14, το οποίο περιέχει ως οργανικό μορφοποιητή isopropylammonium (isopropylammonium) και
μόρια νερού, ενώ στην Εικόνα 13b αφού πραγματοποιηθεί το calcination στους 600 °C παράγεται μια ουδέτερη και καθαρά τετραεδρική πορώδης δομή. [31, 32]

Εικόνα 12 – (a) AlPO-14 που περιέχει SDA και μόρια νερού, (b) ουδέτερη και πορώδης δομή ύστερα από το calcination [31]

Μια εναλλακτική τεχνική, πιο ήπια σε σχέση με την πύρωση, περιλαμβάνει τη χρήση διαλυτών για την απομάκρυνση του οργανικού μορφοποιητή. Βέβαια, για να χρησιμοποιηθεί η τεχνική αυτή θα πρέπει ο μορφοποιητής να μην είναι ισχυρά συνδεδεμένος με το πλέγμα. Μερικοί από τους διαλύτες που χρησιμοποιούνται είναι τα μίγματα υδροχλωρίου-μεθανόλης, οξικό οξύ-αιθανόλης, οξικού νατρίου-μεθανόλης. [32]

2.7 Μηχανισμός πυρήνωσης και κρυστάλλωσης

Η κατανόηση των μηχανισμών που σχηματίζουν τα κρυσταλλικά πορώδη υλικά, όπως οι αργιλοφωσφορικοί μοριακοί ηθμοί, είναι πάρα πολύ σημαντική γιατί έτσι θα μπορέσει να γίνει καλύτερη κατανοητή η σύνθεση και ο σχεδιασμός νέων υλικών με συγκεκριμένες ιδιότητες. Μερικές από τις ιδιότητες των κρυσταλλικών υλικών που διαδραματίζουν σημαντικό ρόλο στις εφαρμογές είναι η κρυσταλλική τελειότητα, το κρυσταλλικό μέγεθος, η κρυσταλλική συμπεριφορά και το κόστος σύνθεσης. Ο σχηματισμός των κρυστάλλων είναι μια φυσική διεργασία η οποία περιλαμβάνει πολλά διαδοχικά στάδια και στηρίζεται στις ιδιότητες του μίγματος που κρυσταλλώνεται, κυρίως την διαλυτότητα. Η κρυστάλλωση των νανοπορωδών υλικών ακολουθεί τα ίδια στάδια όπως οποιοδήποτε υλικό στο οποίο αναπτύσσεται κρυσταλλικότητα.
Όσον αφορά την κρυσταλλική τελειότητα, όλοι οι κρύσταλλοι περιέχουν εγγενείς αλλά και εξωγενείς ατέλειες. Με τον όρο ατέλειες ορίζονται οι μη περιοδικές και σαφώς ορισμένες διαταράξεις στην κρυσταλλική δομή. Όσον αφορά τις εξωγενείς ατέλειες, αυτές μπορούν να ελεγχθούν μέσω της καθαρότητας των συνθηκών σύνθεσης ενώ οι εγγενείς απαιτούν την πλήρη κατανόηση των μηχανισμών ανάπτυξης κρυσταλλικότητας και συνεπώς είναι και πιο δύσκολες. Λόγω της δομικής πολυπλοκότητας που εμφανίζει το κρυσταλλικό δίκτυο, κάθε ατέλεια μπορεί να θεωρηθεί ως μοναδική και να χαρακτηριστεί ανεξάρτητη. για να γίνει αυτό είναι απαραίτητη η μικροσκοπία, συνήθως το ηλεκτρονικό μικροσκόπιο διέλευσης (Transmission electron microscopy TEM). Άλλα φαινόμενα περιλαμβάνουν την εμφάνιση διδύμων κρυσταλλικών δομών (twin structures) καθώς και διακρυσταλλική ανάπτυξη. Αυτές οι ατέλειες εμφανίζονται κυρίως κατά το στάδιο ανάπτυξης των κρυστάλλων και συνήθως είναι αποτέλεσμα των ανταγωνιστικών πορειών κρυστάλλωσης, οι οποίες είναι ενεργειακά σχεδόν ισοδύναμες. Η κατανόηση λοιπόν του μηχανισμού κρυστάλλωσης θα μπορούσε να υποδείξει το ελέγχον παράγωγο της ανάπτυξης καθώς και να προβλέψει τις αλλαγές στις συνθήκες ανάπτυξης ώστε να συντεθεί ο επιθυμητός κρύσταλλος. [33]

Η κρυστάλλωση από διάλυμα πραγματοποιείται μέσω διαδοχικών σταδίων τα οποία περιλαμβάνουν:

a) την πυρήνωση της φάσης, η οποία καθορίζεται από τη σύσταση του διαλύματος
b) την ανάπτυξη των πυρήνων σε μεγαλύτερου μεγέθους κρυστάλλους, ύστερα από την ενσωμάτωση υλικού από το διάλυμα.

Ο ρυθμός πυρήνωσης και κρυστάλλωσης εξαρτάται κυρίως από τη διαλυτότητα των αντιδρών το διάλυμα, δηλαδή τον βαθμό κορεσμού.

Η σύνθεση των ζεόλιθων καθώς και των όμοιων δομικά υλικών (πχ AlPO’s) είναι μια σύνθετη διεργασία και ο ρυθμός κρυστάλλωσης, ο τύπος των προϊόντων που σχηματίζονται καθώς και οι ιδιότητες των προϊόντων (πχ μορφολογία, κατανομή κρυσταλλικού μεγέθους) εξαρτώνται από πολλοί παράγοντες. Μερικοί από αυτούς είναι οι συνθήκες κρυστάλλωσης, θερμοκρασία, ανάδευση, ορίζοντας της γέλης, καθώς και παράμετροι που αφορούν τη σύσταση του διαλύματος, πχ pH, συγκέντρωση νερού, συγκέντρωση υλικού μορφοποιητή κ.α. Τα συνήθη στάδια που περιλαμβάνει η σύνθεση ενός ζεόλιθου είναι τα εξής:
1) Σύνθεση μίγματος από άμορφα αντιδραστήρια που περιέχουν τα επιθυμητά ιόντα για το σχηματισμό του ζεόλιθου (πχ Al, P, Si, Zn κ.α) σε βασικό περιβάλλον. Βέβαια, υπάρχουν αναφορές και για σύνθεση σε όξινο περιβάλλον. Έτσι, προκύπτει μια ετερογενής φάση που έχει αντιδράσει μερικώς και χαρακτηρίζεται ως πρωτοταγής άμορφη φάση. Η φάση αυτή προσομοιάζει μια γέλη ή ένα κολλοειδές διάλυμα συνήθως.

2) Ανάδευση και ορίμανση του μίγματος. Ακολουθεί θέρμανση του μίγματος σε αυτογενείς πιέσεις εντός μεταλλικών αυτοκλείστων, σε θερμοκρασίες πάνω από 100 °C.

3) Σχηματισμός της δευτεροταγούς άμορφης φάσης, η οποία βρίσκεται σε ψευδο-ισορροπία με τη φάση του διαλύματος. Σύμφωνα με τη βιβλιογραφία, η φάση αυτή έχει μια μικρής κλίμακας τάξη λόγω του δομικού χαρακτήρα των κατιόντων στο διάλυμα.

4) Μετά από έναν καθορισμένο χρόνο επαγωγής, ο σχηματισμός των πυρήνων πραγματοποιείται.

5) Ανάπτυξη της κρυσταλλικής δομής, καταναλώνοντας το άμορφο στερεό.
2.7.1 Πυρήνωση

Με τον όρο πυρήνωση περιγράφεται μια σειρά από διεργασίες, σε ατομικό ή μοριακό επίπεδο, κατά τις οποίες τα άτομα ή μόρια του πρόδρομου μίγματος αναδιατάσσονται σε ένα σύμπλεγμα της φάσης του τελικού προϊόντος. Το μέγεθος του συμπλέγματος είναι ικανό ώστε να υπάρξει περαιτέρω ανάπτυξη, με μη αναστρέψιμο τρόπο, σε μακροσκοπικό μέγεθος. Αυτό το σύμπλεγμα ορίζεται ως πυρήνας (nucleus) ή κρίσιμοι πυρήνες (critical nuclei).

Οι μηχανισμοί πυρήνωσης που πραγματοποιούνται στην υδροθερμική σύνθεση είναι όμοιοι με αυτούς που συμβαίνουν στα απλά ανόργανα και οργανικά κρυσταλλικά συστήματα. Για τα συστήματα υγρού-στερεού έχουν δημιουργηθεί δύο κύριες κατηγορίες μηχανισμών πυρήνωσης: οι πρωτοταγείς και οι δευτεροταγείς.
Στην κατηγορία των πρωτοταγών εντάσσονται τόσο οι ομογενείς όσο και οι ετερογενείς διαδικασίες και η κρυστάλλωση κατευθύνεται από το ίδιο το διάλυμα. Στις μεν ομογενείς περιορίζεται αποκλειστικά στα αντιδράντα του μίγματος, ενώ στις δε ετερογενείς αξιοποιούνται εξωτερικά σωματίδια που βρίσκονται στο διάλυμα.

Η δεύτερη κατηγορία περιλαμβάνει την κατάλυση της σύνθεσης των κρυστάλλων παρουσία «πρόδρομων» κρυστάλλων (parent crystals) της ίδιας φάσης. Ο μηχανισμός αυτός απαιτεί μικρότερη ενέργεια ενεργοποίησης σε σχέση με τον πρωτοταγή. Οι πρόδρομοι κρύσταλλοι μπορούν να εισαχθούν αυτούσιοι ως κρύσταλλοι “σπόροι” (seed crystals) στο διάλυμα στην αρχή της σύνθεσης ή να αναπτυχθούν εντός του διάλυματος. [35]

2.7.2 Υπερκορεσμός

Η κινητήρια δύναμη που είναι απαραίτητη για την πυρήνωση και την ανάπτυξη των κρυστάλλων αναφέρεται ως υπερκορεσμός (supersaturation) και ορίζεται ως η διαφορά του χημικού δυναμικού μεταξύ ενός μορίου στο διάλυμα και ενός μορίου που βρίσκεται στην στερεά κρυσταλλική φάση. Η εξίσωση που αναπαριστά τη διαφορά μεταξύ των χημικών δυναμικών είναι:

$$\Delta \mu = \mu_s - \mu_c$$

Οπου, μ_s το χημικό δυναμικό στο διάλυμα (solution) και μ_c το χημικό δυναμικό στην κρυσταλλική φάση (crystalline).

Για $\Delta \mu > 0$, το διάλυμα θεωρείται υπέρκορο, δηλαδή στη συγκεκριμένη ποσότητα υγρού δεν μπορεί να διαλυτοποιηθεί περισσότερο στερεό. Όταν ικανοποιείται η συνθήκη αυτή τότε είναι πιθανό να συμβεί πυρήνωση και/ή κρυσταλλική ανάπτυξη. Αντίθετα, όταν $\Delta \mu < 0$ το διάλυμα χαρακτηρίζεται ως ακόρεστο και θα πραγματοποιηθεί διαλυτοποίηση του στερεού. Ο κύριος παράγοντας που επηρεάζει τη διαλυτότητα σε ένα διάλυμα είναι η θερμοκρασία Για πολλές στερεές ουσίες διαλυμένες στο νερό συνήθως αύξηση της θερμοκρασίας οδηγεί σε αύξηση της διαλυτότητας ενώ οι αέριες διαλυμένες ουσίες εμφανίζουν πιο πολύπλοκη συμπεριφορά. Είναι λογικό η διαλυτότητα να επηρεάζεται ανάλογα το σύστημα το οποίο εξετάζεται πχ στερεό/διάλυμα, αέριο/στερεό, τήγμα/στερεό.
Για συστήματα στερεών/διαλυμάτων, όπως αυτά που απαντώνται στην υδροθερμική σύνθεση, ο λόγος υπερκορεσμού δίνεται από την ακόλουθη εξίσωση:

\[
S = \frac{\prod a_i^{n_i}}{\prod a_{i,e}^{n_i}}
\]

Οπου, \(n_i \) ο αριθμός των ιόντων στο μόριο του κρυστάλλου, \(a_i \) και \(a_{i,e} \) η πραγματική ενεργότητα και η ενεργότητα ισορροπίας του μορίου \(i \) στον κρύσταλλο, αντίστοιχα.

2.7.3 Ρυθμός πυρήνωσης

Ο ρυθμός πυρήνωσης εκφράζει τον αριθμό των πυρήνων που σχηματίζονται ανά μονάδα χρόνου και ανά μονάδα όγκου. Η περιγραφή του ρυθμού αυτού μπορεί να γίνει από μια εξίσωση που βασίζεται στην εξίσωση Arrhenius.

\[
J = A \exp\left(\frac{-\Delta G^*}{kT}\right)
\]

Οπου, το \(A \) είναι σταθερά η οποία εξαρτάται από τον υπερκορεσμό, \(\Delta G^* \) είναι η ελάχιστη ενέργεια Gibbs όστε να παρατηρηθεί πυρήνωση, \(k \) είναι σταθερά και \(T \) η θερμοκρασία. Ένα τυπικό διάγραμμα του ρυθμού πυρήνωσης \(J \) συναρτήσει του υπερκορεσμού \(S \) παρουσιάζεται στο Διάγραμμα 1.

![Διάγραμμα 1 - Ρυθμός πυρήνωσης συναρτήσει του υπερκορεσμού](33)

Είναι φανερό ότι ο ρυθμός πυρήνωσης παραμένει μηδενικός μέχρι να επιτευχθεί μια κρίσιμη τιμή του υπερκορεσμού (\(\Delta \mu_c \)), από την οποία κι έπειτα ο ρυθμός αυξάνει εκθετικά και στη συνέχεια σχεδόν γραμμικά. Η κρίσιμη αυτή τιμή ορίζει τη μετασταθεί ζώνη στην οποία η ανάπτυξη κρυστάλλων μπορεί να προχωρήσει χωρίς να πραγματοποιείται επακόλουθη πυρήνωση. [33]
2.7.4 Χρόνος επαγωγής
Ο χρόνος που μεσολαβεί από την επίτευξη ενός υπέρκορου διαλύματος μέχρι την
παρατήρηση του πρώτου κρυστάλλου ορίζεται ως ο χρόνος επαγωγής. Φυσικά, η τιμή
αυτή εξαρτάται από το πότε η ορίζεται η χρονική στιγμή μηδέν καθώς και από την
technική που χρησιμοποιείται για την ανίχνευση σχηματισμού των κρυστάλλων.
Μερικοί από τους παράγοντες που μπορούν να επηρεάσουν το χρόνο επαγωγής είναι ο
υπερκορεσμός, η ανάδευση, η παρουσία προσμίξεων, το ιξώδες κ.α. Έτσι λοιπόν έγινε
κατάμηνη του χρόνου αυτού σε τρία επιμέρους διαστήματα:

\[t_i = t_r + t_n + t_g \]

Οπου, \(t_i \) είναι ο χρόνος χαλάρωσης ο οποίος απαιτείται ώστε να επιτευχθεί ημιστατική
κατάσταση (quasi-steady state) κατανομή των μοριακών συμπλεγμάτων (clusters), \(t_n \)
eίναι ο απαιτούμενος χρόνος για τον σχηματισμό ενός πυρήνα και \(t_g \) είναι ο
απαιτούμενος χρόνος ώστε ο πυρήνας να αναπτυχθεί σε ανιχνεύσιμο μέγεθος.

2.7.5 Κρυσταλλική ανάπτυξη
Το επόμενο στάδιο, μετά το σχηματισμό των πρώτων πυρήνων, είναι η κρυσταλλική
ανάπτυξη. Στην ουσία, πρόκειται για μια σειρά διαδικασιών όπου ένα άτομο ή μόριο
ενσωματώνεται στην επιφάνεια του κρυστάλλου, γεγονός που οδηγεί στην αύξηση του
μεγέθους του. Μπορεί να γίνει μια κατηγοριοποίηση των διαδικασιών αυτών σε
tέσσερα στάδια:

1) μεταφορά του ατόμου δια μέσο του διαλύματος
2) προσκόλληση του ατόμου στην επιφάνεια
3) μετακίνηση των ατόμων κατά μήκος της επιφάνειας
4) προσκόλληση των ατόμων σε κόμβους (kinks) και γωνίες (edges)

Η πρώτη διαδικασία ανήκει στην ευρύτερη κατηγορία των μεταφορικών διεργασιών
(transport processes) ενώ οι 2-4 ανήκουν στις επιφανειακές διεργασίες (surface
processes) και μπορούν να περιλαμβάνουν πολλά ενδιάμεσα στάδια.
Διάγραμμα 2 - Μεταβολή του ρυθμού πυρήνωσης, του μεγέθους κρυστάλλων και του υπερκορεσμού συναρτήσει του χρόνου[33]

2.8 AlPO₄-5: Δομή και υποκαταστάσεις

Το AlPO₄-5 ανήκει στις δομές τύπου AFI, κατά IZA, και οι κρύσταλλοι του έχουν εξαγωνική συμμετρία. Το ιδιαίτερο χαρακτηριστικό των δομών αυτών είναι η διαμόρφωση ενός μονοδιάστατου καναλιού, κατά τον άξονα c. Το κανάλι αυτό δημιουργείται από 12-μελείς δακτυλίους εναλλασσόμενων τετραέδρων \([\text{AlO}_4]^-\) και \([\text{PO}_4]^3\). Αυτός ο τύπος των αργιλοφωσφορικών μοριακών ημικύκλων είναι από τους πρώτους που συντέθηκε καθώς και από αυτούς με το μεγαλύτερο επιστημονικό ενδιαφέρον. Σύμφωνα με τη βιβλιογραφία έχουν βρεθεί 25 διαφορετικοί οργανικοί μορφοποιητές πλέγματος (SDA) για τη σύνθεση της συγκεκριμένης δομής. Το ενδιαφέρον αυτό μπορεί να δικαιολογηθεί από τις εφαρμογές για τις οποίες μπορεί να αξιοποιηθεί το AlPO₄-5 όπως κατάλυση, διαχωρισμούς και ως φορείς νανοκλίμακας για την ανάπτυξη των μικρότερων νανοσωλήνων άνθρακα. [21, 36, 37]

Ο γενικός χημικός τύπος που περιγράφει τις δομές αυτές είναι: \(\text{Al}_{12}\text{P}_{12}\text{O}_{48} \), ενώ για τον κάθε κρύσταλλο ισχύουν τα εξής:

- \(a=b = 13.7260 \text{ Å}, c= 8.48 \text{ Å} \)
- \(\text{όγκος} = 1420.6 \text{ Å}^3 \)
Η πιο σημαντική παράμετρος για τις εφαρμογές τους στο διαχωρισμό είναι η διάμετρος του μονοδιάστατου καναλίου, το οποίο είναι σχεδόν κυκλικό. Η διάμετρος αυτή είναι 7.3 Å και το υλικό αυτό εντάσσεται στην κατηγορία με μεγάλους πόρους. [38]

Εικόνα 14 - Δομικές ιδιότητες AlPO₄-5 [39]

Οι 12-μελείς δακτύλιοι δεν είναι στην πραγματικότητα οι μόνες διαμορφώσεις που παρατηρούνται στη δομή AFI. Αυτοί δημιουργούν τα κύρια κανάλια του AlPO₄-5, όμως για να συγκρατείται συμπαγής η δομή σχηματίζονται κι άλλα μονοδιάστατα κανάλια αποτελούμενα από 4 και 6 εναλλασσόμενα τετράεδρα αργιλίου και φωσφόρου, όλα στη διεύθυνση του άξονα c. Αυτό μπορεί να γίνει καλύτερα κατανοητό από την Εικόνα 16, που παρουσιάζει μια πλήρως ανεπτυγμένη δομή AFI.

Εικόνα 15 - Δομή AFI. Στο κέντρο βρίσκεται ο 12-μελής δακτύλιος, γύρω από αυτόν 4-μελείς και 6-μελείς δακτύλιοι συγκρατούν τη δομή [40]
Μέχρι σήμερα έχουν αναφερθεί διάφορες υποκαταστάσεις μετάλλων στο πλαίσιο των AlPO και τα υλικά που προκύπτουν αξιοποιούνται για διαφορετικές εφαρμογές κάθε φορά.

Μετά την υποκατάσταση των διάφορων μετάλλων πραγματοποιήθηκε με επιτυχία η ταυτόχρονη ενσωμάτωση και μορίων πυριτίου στα MeAPO’s. Έτσι, προέκυψαν τα MeSAPO (ή MeAPSO όπως συναντάται σπανιότερα) και το ενδιαφέρον στοιχείο σε όλες αυτές τις υποκαταστάσεις είναι πως η δομή παρέμενε σταθερή και άνηκε στην κατηγορία AFI. Στην ίδια κατεύθυνση προέκυψαν και δι-μεταλλικές υποκαταστάσεις, όπως το FeMgAPO-5 και το CoFeAPO-5. [18]

<table>
<thead>
<tr>
<th>Material</th>
<th>Structure code</th>
<th>Ring opening</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeAPO-5</td>
<td>AFI</td>
<td>12</td>
<td>x</td>
</tr>
<tr>
<td>MeAPSO-5</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Εικόνα 16 - Μερικές από τις υποκαταστάσεις που έχουν αναφερθεί για το AlPO₄-5 [18]

2.9 AlPO-34: Δομή και υποκαταστάσεις

Οι δομές αυτές αποτελούν ανάλογα μιας συγκεκριμένης κατηγορίας ζεόλιθων, του χαμπαζίτη (chabazite – CHA). Η δομική τους μονάδα αυτή τη φορά δεν είναι εξαγωνική, όπως στα AlPO₄-5, αλλά ελλειψοειδή ενώ δεν σχηματίζονται κανάλια σε μία μόνο διάσταση. Επίσης, οι δακτυλίοι που σχηματίζονται αποτελούνται από 8 εναλλασσόμενα τετράεδρα [AlO₄]⁻ και [PO₄]³⁺. Είναι λογικό λοιπόν, τα AlPO-34 αφού αποτελούνται από 8-μελείς δακτυλίους να έχουν και μικρότερη διάμετρο. Ανήκουν στα υλικά με πόρους μικρού μεγέθους και η διάμετρος τους είναι 3.8 Å. [21]. Όσον αφορά τις ιδιότητες της κυψελίδας του χαμπαζίτη ισχύει:

- a=b = 13.6750 Å, c= 14.7670 Å
- όγκος = 2391.6 Å³ [41]
Όπως είναι εμφανές οι 8-μελείς δακτύλιοι δεν είναι οι μόνοι που υπάρχουν στη δομή του AIPO-34 αλλά παρατηρούνται και κάποιοι συνεκτικοί 4-μελείς δακτύλιοι, οι οποίοι βοηθούν και στην έλλειψοειδή διαμόρφωση της κυψελίδας. Ακόμη η κάθε κυψελίδα συνδέεται με τη βοήθεια διπλών 6-μελών δακτυλίων που ονομάζονται d6r (t-hpr). Εδώ πρέπει να αναφερθεί πως όσες προσπάθειες έγιναν για την παραγωγή AIPO-34 με τη συμβατική υδροθερμική μέθοδο απέτυχαν και για το λόγο αυτό κρίθηκε απαραίτητη η παρουσία ιών του φθορίου, συνήθως με την προσθήκη υδροφθορίου στο πρόδρομο διάλυμα. Τα ιόντα φθορίου υποβοηθούν τη σύνδεση μεταξύ δύο ατόμων Al³⁺, τα οποία βρίσκονται στις δομές των διπλών 6-μελών δακτυλίων. Επίσης, τα ιόντα φθορίου εξουδετερώνουν τα πρωτονιομένα οργανικά μόρια που βρίσκονται στην κυψελίδα του χαμπαζίτη. Αφού σχηματιστεί η δομή και σταθεροποιηθεί τότε τα ιόντα φθορίου όπως και ο οργανικός μορφοποιητής πλέγματος απομακρύνονται με θέρμανση (calcination) και η τοπολογία του χαμπαζίτη σχηματίζεται. Κάποιες προσπάθειες για τη σύνθεση AIPO-34 χωρίς τη χρήση ιών του φθορίου έχουν αναφερθεί αξιοποιώντας μη συμβατικές πηγές φωσφόρου, όπως Al(H₃PO₄)₃ ή H₁₀P₈O₂₅ και ως οργανικό μορφοποιητή πλέγματος υδροξείδιο του τετρα-αιθυλαμονίου (Tetraethylammonium hydroxide).

To AIPO-34 είναι ευαίσθητο στην παρουσία μορίων νερού και έχουν αναφερθεί αλλοιώσεις στη δομή του, οι οποίες αφηρούνται στην ιδιότητα των μορίων του αργιλίου να αλλάζουν τον προσανατολισμό τους. Γενικά, αυτές οι αλλοιώσεις είναι αντιστρεπτές και η αρχική δομή μπορεί να ληφθεί και πάλι απομακρύνοντας το νερό σε χαμηλές θερμοκρασίες. [43]
Η δυσκολία δημιουργίας σταθερής δομής των AlPO-34 οδήγησε πρώτα στη δημιουργία των μεταλλικών υποκαταστάσεων και πιο συγκεκριμένα, πρώτο συντέθηκε το SAPO-34. Η εισαγωγή μεταλλικών στοιχείων συνήθως δημιουργούσε άξινες θέσεις κατά Bronsted και έτσι τα υλικά αυτά μπορούσαν να χρησιμοποιηθούν για καταλυτικές εφαρμογές. Η πιο χαρακτηριστική εφαρμογή είναι αυτή της αντίδρασης μετατροπής της μεθανόλης σε ολεφίνες, με τη χρήση του άξινου SAPO-34. Πέρα από τα SAPO-34 και τα MeAPO-34 έγιναν ξανά προσπάθειες για την πραγματοποίηση διπλής υποκατάστασης, αρκετές από τις οποίες ήταν επιτυχείς (πχ MnSAPO-34, CoSAPO-34).

Εικόνα 18 - Ενσωμάτωση δισθενών & τετρασθενών στοιχείων στη δομή του AlPO-34 και σχηματισμός άξινων θέσεων [44]

2.10 Εφαρμογές των αργιλοφωσφορικών μοριακών ημιμονίων
Όπως αναφέρθηκε και στην παράγραφο 2.3 τα AlPO’s είναι ουδέτερες δομές, χωρίς ηλεκτρικό φορτίο. Είναι λογικό λοιπόν να μην αξιοποιούνται για την κατάλυση άξινων αντιδράσεων. Παρόλα αυτά υπάρχει πλήθος αντιδράσεων που τα AlPO’s μπορούν να βρουν εφαρμογή χάρις στον ασθενώς άξινο και ταυτόχρονα ασθενώς βασικό τους χαρακτήρα.

Μια από αυτές τις αντιδράσεις είναι η όρθο-μεθυλίωση (O-methylation) της κατεχόλης (catechol) όπου σχηματίζεται γουαϊακόλη (guaiacol), ένα συστατικό απαραίτητο για τη φαρμακευτική βιομηχανία καθώς και για την αρωματοποίηση και τα τρόφιμα. Η συμβατική μέθοδος σύνθεσης χρησιμοποιεί ως ομογενή καταλύτη υδρίδιο του νατρίου –NaH– παράγα μεγάλες ποσότητες αποβλήτων και τα χημικά που χρησιμοποιούνται είναι τοξικά και διαβρωτικά. Η χρήση ενός στερεού καταλύτη (ετερογενής) βοηθά στη
μείωση των αποβλήτων καθώς και στον ευκολότερο διαχωρισμό του καταλύτη από το προϊόν.

Ακόμα μια εφαρμογή των ουδέτερων AlPO είναι η συμπύκνωση της επτανάλης με βενζαλδεΰδη για την συνθέση της αρωματοποίησης (Jasminaldéyde). Το προϊόν της αντίδρασης αυτής ανήκει στην χημική κατηγορία των αρωματοποιητικών. Η σύνθεση απαιτεί την παρουσία βάσεως, συνήθως υδροξείδιο του νατρίου ή του καλίου ως καταλύτες. Το μεγαλύτερο πρόβλημα της συμβατικής μεθόδου σύνθεσης ήταν η παραγωγή μεγάλων ποσοτήτων ανεπιθύμητων παραπροϊόντων και για αυτό έγιναν δοκιμές με διάφορους στερεούς καταλύτες. Τα καλύτερα αποτελέσματα προήλθαν όταν χρησιμοποιήθηκαν άμορφοι αργιλοφωσφοριακοί κιόλας και αποδόθηκε στην ταυτόχρονη ασθενής δέξια κατά και αλκαλική συμπεριφορά των AlPO’s. [32]

Εικόνα 19 - Σύνθεση ιασμο-αλδεΰδης (Jasminaldéyde) [32]

Μια από τις πιο σημαντικές εφαρμογές των AlPO’s είναι η αξιοποίησή τους για το διαχωρισμό βάσει του μοριακού μεγέθους – εξού και ο χαρακτηρισμός μοριακοί ηθμοί. Ο μηχανισμός του διαχωρισμού στηρίζεται στις περισσότερες φορές στην προσαρμογή από τη δομή του AlPO. Βέβαια, όπως έχει αναφερθεί προηγουμένως για να δημιουργηθεί η πορώδης δομή του AlPO πρέπει να απομακρυνθεί ο οργανικός μορφοποιητής πλέγματος (SDA). Ακόμα μια πολύ σημαντική ιδιότητα είναι η διάμετρος των πόρων που διαθέτει η κάθε δομή. Έτσι, επιτελείται ο διαχωρισμός με βάση το μοριακό μέγεθος συγκρατώντας τα μόρια που διαθέτουν τις απαιτούμενες διαστάσεις ώστε να εισέλθουν στους πόρους. Στη βιβλιογραφία υπάρχουν διάφορες αναφορές τόσο για την προσφόραση διαφόρων ρεστών όσο και για το διαχωρισμό μιγμάτων με τη χρήση AlPO’s:

- Προσφόραση μεθανόλης, αμινονίας και νεφρό σε δομές AlPO4-5, AlPO4-17 & AlPO4-18 [45]
• Προσρόφηση επικίνδυνων οργανικών βαφών από υδατικά διαλύματα [46]
• Προσρόφηση εξανίου και βενζολίου σε δομές AlPO₄-5 και AlPO₄-31 [47]
• Προσρόφηση υδρογόνου σε χαμηλές θερμοκρασίες από νανοπορώδεις αργιλοφωσφορικούς μοριακούς ημιούχους [48]
• AlPO’s για προσρόφηση CO₂ και διαχωρισμό CO₂/ N₂[49]

Η ενσωμάτωση του πυρίτιου στις δομές των AlPO’s οδήγησε στη δημιουργία υλικών ικανά να καταλύσουν οξειδωτικές αντιδράσεις και σημαντικά έρευνα έχει πραγματοποιηθεί γύρω από τα SAPO’s. Το αποτέλεσμα είναι η χρήση των SAPO-11 και SAPO-34 σε βιομηχανικές εφαρμογές. Το SAPO-11 αξιοποιήθηκε για την αποκήρωση (dewaxing) των λιπαντικών, ενώ το SAPO-34 χρησιμοποιήθηκε από την UOP για τη μετατροπή της μεθανόλης σε ολεφίνες. [13]

Ακόμα, τα SAPO’s χρησιμοποιούνται για την πυρόλυση κανονικών παραφινών, διεργασίες υδρογονοπυρόλυσης καθώς και για την οξειδωτική αφυδρογόνωση (oxidative dehydrogenation) παραφινών. [19]

Μια ακόμα εμπορική εφαρμογή των SAPO’s είναι η μετατροπή Beckmann της κυκλοεξανοξίμης (cyclohexanone oxime) σε καπρολακτάμη. Η καπρολακτάμη είναι ένα από τα κύρια συστατικά για την παραγωγή των αλειφατικών πολυαμιδίων (ή nylon). [32]

Εκτός από το πυρίτιο αρνητικό φορτίο, άρα και οξειδωτικές θέσεις, μπορεί να προκύψει με την υποκατάσταση μετάλλων στις δομές των AlPO’s. Η ενσωμάτωση στοιχείων μετάπτωσης, όπως το Ti, V, Mn, Fe και Co, δημιουργεί υλικά τα οποία έχουν οξειδοαναγωγικές ιδιότητες. Τα πλεονεκτήματα αυτού του τύπου καταλύτων σε σχέση με τους άλλους τύπους ετερογενών οξειδοαναγωγικών καταλύτων είναι:

1) Οι θέσεις που βρίσκονται οι οξειδοαναγωγικές κέντρα είναι ισχυρά συνδεδεμένες στη σεισμική δομή και έτσι αποφεύγεται η εκπλύση (leaching) των μεταλλικών ιόντων
2) Οι καλώς εκφρασμένες κοιλότητες και κανάλια των MeAPO’s, μοριακών διαστάσεων, προσοδίου στους καταλύτες μοναδικές ιδιότητες όπως την επιλεκτικότητα βάση σχήματος ως προς τα αντιδρώντα, ενδιάμεσα και παραχθέντα μόρια
Χαρακτηριστικό παράδειγμα αποτελεί η επιλεκτική οξείδωση του κυκλοεξανίου σε κυκλοεξανόλη και κυκλοεξανόνη, συστατικά απαραίτητα για την παραγωγή αδιπικού οξέος και καπρολακτάμης (πρόδρομες ενώσεις για την παραγωγή nylon). Η συμβατική μέθοδος περιλαμβάνει τη χρήση ομογενή καταλύτη οξικού κοβαλτίου (III), με αποτέλεσμα όμως την παραγωγή πολλών ανεπιθύμητων παραπροϊόντων. Ακόμα, η παραγωγή του αδιπικού οξέος περιλαμβάνει την οξείδωση της κυκλοεξανόλης με νιτρικό οξύ. Η ετήσια παραγωγή του αδιπικού οξέος υπολογίζεται σε περίπου 2 εκατομμύρια μετρικούς τόνους, οπότε γίνεται εύκολα αντιλήπτητη η μεγάλη ποσότητα οξειδίων του αζώτου που παράγοντα. Για τη μείωση των εκπομπών αυτών που συμβάλλουν στην όξινη βροχή και στην αιθαλομίχλη τα MeAPO’s αξιοποιήθηκαν. Επέδειξαν εξαιρετική επιλεκτικότητα και παρήγαγαν πιο εύκολα διαχειρίσιμα απόβλητα, όπως υπεροξείδιο του υδρογόνου. Πιο συγκεκριμένα, το FeAPO-5 αποδείχτηκε το καλύτερο υλικό για την κατάλυση της συγκεκριμένης αντίδρασης. [19]
Κεφάλαιο 3ο – Δέσμευση, αποθήκευση και αξιοποίηση του διοξείδιου του άνθρακα (Carbon dioxide Caption, Utilization and Storage technologies - CCUS)

3.1 Διοξείδιο του άνθρακα CO₂
Το διοξείδιο του άνθρακα είναι το βασικό αέριο που συμβάλλει στο φαινόμενο του θερμοκηπίου και στην υπερθέρμανση του πλανήτη. Η κύρια πηγή παραγωγής του είναι καύση των ορυκτών καυσίμων, μιας και αποτελεί το προϊόν της τέλειας καύσης των υδρογονανθράκων. Οι πιο συνηθισμένες πηγές εκπομπής διοξειδίου του άνθρακα είναι τα εργοστάσια παραγωγής ηλεκτρικής ενέργειας, τα αυτοκίνητα και άλλες βιομηχανικές διεργασίες (πχ παραγωγή τσιμέντου, παραγωγή υδρογόνου, καύση βιομάζας κ.α).

Οι πηγές εκπομπής μπορούν να χωριστούν σε γενικές γραμμές σε δύο κατηγορίες και χαρακτηρίζονται ανάλογα με το μέγεθος των εκπομπών τους σε μεγάλες (>0.1 MtCO₂ yr⁻¹) και μικρές. Αυτές που παρουσιάζουν το μεγαλύτερο ενδιαφέρον είναι οι μεγάλες, διότι οι μικρές είναι πιο δύσκολο να ελεγχθούν αφού τις περισσότερες φορές είναι κινητές (πχ αυτοκίνητα) και δεν έχουν τόσο σημαντικό αποτύπωμα (πχ αστικές πηγές) όσο οι μεγαλύτερες. Στον Πίνακα 1 παρουσιάζονται οι διεργασίες που χρησιμοποιούν ορυκτά καύσιμα και βιομάζα σε συνάρτηση με το αποτύπωμα τους σε διοξείδιο του άνθρακα ετησίως. [51]

Εικόνα 20 - Ποσοστό συμβολής διεργασιών στην παραγωγή θερμοκηπικών αερίων[50]
Πίνακας 1 - Διεργασίες ορυκτών καυσίμων & βιομάζας σε συνάρτηση με τις εκπομπές διοξειδίου του άνθρακα [51]

| Πόσο της παγκόσμιας εκπομπής CO₂ | 46% | 34% | 20% |

Οι κύριοι τύποι ορυκτών καυσίμων που χρησιμοποιούνται είναι ο άνθρακας, το φυσικό αέριο και το πετρέλαιο. Στον άνθρακα αποδίδεται το 46% της παγκόσμιας εκπομπής CO₂, ενώ στο πετρέλαιο και στο φυσικό αέριο αντιστοιχούν το 34% και 20%, αντίστοιχα. Η όλη και αυξανόμενη ανάγκη για ενέργεια βασίζεται στη συνεχή οικονομική ανάπτυξη παγκόσμιας. Χαρακτηριστικά, έχει σημειωθεί αύξηση της τάξεως του 150% στην παγκόσμια ολική πρωτογενής ενέργεια (Total Primary Energy Supply – TPES) από το 1971 έως το 2014, με τα ορυκτά καύσιμα να αποτελούν την κύρια πηγή για την παραγωγή αυτής της ενέργειας. Παρά την εισαγωγή των εναλλακτικών πηγών ενέργειας, όπως της πυρηνικής, της υδροδυναμικής, της ηλιακής κ.α., το ποσοστό των ορυκτών καυσίμων στην παγκόσμια παραγωγή ενέργειας έχει παραμείνει σχεδόν σταθερό για την ίδια αυτή περίοδο. [50]

Εικόνα 21 - Παγκόσμια παραγωγή ενέργειας από ορυκτά και μη καύσιμα [50]
3.2 Περιορισμός της κλιματικής αλλαγής μέσω τεχνικών συλλογής και αποθήκευσης διοξειδίου του άνθρακα

Η συλλογή και αποθήκευση του διοξειδίου του άνθρακα αποτελεί μια διεργασία που έχει ως σκοπό το διαχωρισμό του CO₂ από πηγές παραγωγής ενέργειας και βιομηχανικές πηγές. Στη συνέχεια, η ποσότητα που έχει συλλεχθεί μεταφέρεται και αποθηκεύεται σε συγκεκριμένες τοποθεσίες, απομονωμένες από την ατμόσφαιρα, για μεγάλα χρονικά διαστήματα. Η τεχνική αυτή θεωρείται μια επιλογή ανάμεσα στις προτεινόμενες δράσεις για τον περιορισμό και την σταθεροποίηση των συγκεντρώσεων των θερμοκηπικών αερίων στην ατμόσφαιρα.

Εναλλακτικές επιλογές αποτελούν οι ενεργειακά αποδοτικότεροι μετασχηματισμοί των μονάδων (retrofits), η μετάβαση σε καύσιμα με μικρότερο αποτύπωμα διοξειδίου του άνθρακα, η πυρηνική ενέργεια και οι ανανεώσιμες πηγές ενέργειας. Βέβαια, όπως αναφέρθηκε και προηγουμένως οι πηγές καύσιμα είναι η κυριαρχική πηγή για την παραγωγή ενέργειας και θα συνεχίσει να είναι για τα επόμενα 50 χρόνια, σύμφωνα με τις προβλέψεις.

Για να χαρακτηριστούν αποτελεσματικές οι προσπάθειες συλλογής και αποθήκευσης του διοξειδίου του άνθρακα θα πρέπει η πηγή να εκπέμπει ρύπους με υψηλή συγκέντρωση CO₂. Ωστόσο, από όλες τις προαναφερθείσες κατηγορίες που στηρίζονται στα ορυκτά καύσιμα, μόνο το 2% παράγει ρύπους με συγκέντρωση πάνω από 95%. Η μεγάλη πλειοψηφία των υπολοίπων διεργασιών έχουν εκπομπές με συγκέντρωση CO₂ λιγότερο από 15%. Γίνεται κατανοητό πως όσο μικρότερη η συγκέντρωση του CO₂ στους ρύπους τόσο αυξάνεται και το κόστος της τεχνικής λόγω της ανάγκης για διαχωρισμό των ρύπων.

Βέβαια, η τεχνική συλλογής του διοξειδίου του άνθρακα έχει ως αποτέλεσμα τη μειωμένη απόδοση της βιομηχανικής μονάδας λόγω της επιπρόσθετης ενέργειας που απαιτείται για να πραγματοποιηθούν οι επιμέρους διεργασίες συλλογής/διαχωρισμού. Με τη διαθέσιμη τεχνογνωσία έχουν επιτευχθεί ποσοστά συλλογής του CO₂ 85-95%.

Ένα εργοστάσιο εξοπλισμένο με σύστημα συλλογής και αποθήκευσης CO₂ έχει υπολογιστεί ότι απαιτεί περίπου 10-40% περισσότερη ενέργεια σε σχέση με ένα εργοστάσιο χωρίς σύστημα. Τα αποτελέσματα όμως για τα δύο αυτά εργοστάσια όσον αφορά το αποτύπωμα του CO₂ στην ατμόσφαιρα απεικονίζονται στο Διάγραμμα 3. Η μείωση των ρύπων του CO₂ στην ατμόσφαιρα υπολογίζεται σε 80-90% στο εργοστάσιο που έχει εγκαταστήσει το σύστημα συλλογής και αποθήκευσης.
3.2.1 Τεχνικές συλλογής CO₂

Από όλα τα παραπάνω, γίνεται κατανοητό πως ο σκοπός της συλλογής του CO₂ είναι η παραγωγή ενός συμπυκνωμένου ρεύματος αερίου με υψηλή συγκέντρωση στον επιθυμητό ρύπο, το οποίο θα μεταφερθεί στην κατάλληλη τοποθεσία. Όσο πιο υψηλή η συγκέντρωση τόσο πιο οικονομική η διαδικασία. Οι τεχνικές συλλογής του CO₂ χωρίζονται σε 4 βασικές κατηγορίες:

1. Συστήματα πριν την καύση (pre-combustion)

 Τα κύρια κάσιμα επεξεργάζονται εντός αντιδραστήρα με ατμό και αέρα ή οξυγόνο, ώστε να παραχθεί ένα μίγμα το οποίο αποτελείται κυρίως από μονοξείδιο του άνθρακα και υδρογόνο, ευρύτερα γνωστό ως αέριο σύνθεσης (synthesis gas). Επιπρόσθετο υδρογόνο, μαζί με CO₂, παράγεται από την αντίδραση του μονοξειδίου του άνθρακα με ατμό σε έναν δεύτερο αντιδραστήρα (shift reactor). Το παραγόμενο μίγμα στη συνέχεια διαχωρίζεται και το ρεύμα υδρογόνου μπορεί να αξιοποιηθεί για την παραγωγή ενέργειας ή/και θερμότητας.

2. Συστήματα μετά την καύση (post-combustion)
Τα συστήματα αυτά διαχωρίζουν το \(\text{CO}_2 \) από τα υπόλοιπα καυσαέρια (flue gas) τα οποία παράγονται από την καύση των καυσίμων υπό αέρα. Συνήθως χρησιμοποιούνται υγροί διαλύτες ώστε να συλλέγεται το μικρό κλάσμα του \(\text{CO}_2 \), περίπου 3-15% κατ’ άρχο, από τα καυσαέρια όπου το άζωτο καταλαμβάνει το μεγαλύτερο ποσοστό. Για μονάδες ηλεκτροπαραγωγής με κονιοποιημένο άνθρακα (pulverized coal) ή μονάδες συνδυασμένου κύκλου φυσικού αερίου (Natural Gas Combined Cycle – NGCC) ο οργανικός διαλύτης που χρησιμοποιείται κατά κόρον είναι η μονο- αιθανολαμίνη (monoethanolamine-MEA).

3. Συστήματα καύσης με οξυγόνο (oxyfuel combustion)

Η διαφορά των διεργασιών αυτών έγκειται στο ότι η καύση των καυσίμων δεν πραγματοποιείται υπό αέρα αλλά υπό οξυγόνο και έτσι τα καυσαέρια αποτελούνται κυρίως από \(\text{CO}_2 \) και υδρατμούς. Έτσι, το μίγμα το καυσαερίων έχει μεγάλη συγκέντρωση σε διοξείδιο του άνθρακα, περισσότερο από 80% κατ’ άρχο. Οι υδρατμοί συμπυκνώνονται με ψύξη και το αέριο συμπιέζεται στη συνέχεια. Τα συστήματα αυτά όμως είναι ακόμα σε πειραματικό στάδιο και απαιτείται περαιτέρω έρευνα για την αξιοποίησή τους στη βιομηχανία.

4. Βιομηχανικές εφαρμογές

Διάφορες βιομηχανικές εφαρμογές που περιλαμβάνουν πηγή καυσίμων καθώς και κάποια πρώτη ήλη και η διεργασία αυτών περιλαμβάνει την παραγωγή \(\text{CO}_2 \) και άλλα προϊόντα. Χαρακτηριστικό παράδειγμα η παραγωγή αμμοκινήτριας.
3.2.2 Μεταφορά του CO$_2$

Μετά τη συλλογή του CO$_2$, με τις διάφορες τεχνικές που υπάρχουν, σειρά έχει η μεταφορά του αερίου στους χώρους που πρόκειται να αποθηκευτεί ή αξιοποιηθεί. Για να μπορέσει να γίνει με επιτυχία η μεταφορά του αερίου είναι απαραίτητη η συμπίεση αυτού. Συνήθως, συμπιέζεται σε πίεση πάνω από 8 MPa, ώστε να προκύπτει μονοφασική ροή και να αυξάνεται η πυκνότητα του CO$_2$. Για αποστάσεις μέχρι 1000 χιλιόμετρα, οι αγωγοί προτιμώνταν για τη μεταφορά μεγάλων ποσοτήτων διοξειδίου του άνθρακα. Για μεγαλύτερες αποστάσεις ή για ποσότητες μικρότερες από μερικά εκατομμύρια τόνους η θαλάσσια μεταφορά μπορεί να είναι πιο οικονομική, όταν μπορεί να εφαρμοστεί. Σε διαφορετική περίπτωση μπορεί να μεταφερθεί μέσω τραίνου ή φορτηγών από ειδικά μονωμένες δεξαμενές, σε θερμοκρασίες πολύ χαμηλές (−20 °C) και χαμηλές πίεσες. Φυσικά, πολύ σημαντικό ρόλο παίζει η απόσταση στην οποία βρίσκεται η τοποθεσία που πρόκειται να αποθηκευτεί ή αξιοποιηθεί το διοξείδιο του άνθρακα.

3.2.3 Αποθήκευση του CO$_2$
Όσον αφορά την αποθήκευση του διοξειδίου του άνθρακα υπάρχουν δύο κύριες κατηγορίες που αξιοποιούνται: οι διάφοροι γεωλογικοί σχηματισμοί και τα έγκατα των οικεανών.

Για την γεωλογική αποθήκευση του CO$_2$ έχουν εξεταστεί οι εξής τρεις διαμορφώσεις:

1. Κοιτάσματα πετρελαίου και αερίου
2. Βαθιοί αλατούχοι σχηματισμοί (saline formations)
3. Στρώματα άνθρακα, τα οποία δεν μπορούν εξορυχθούν

Σε όλες τις περιπτώσεις το αέριο τροφοδοτείται σε πυκνή μορφή στους διάφορους πετρώδες σχηματισμούς, κάτω από την επιφάνεια της γης. Οι αποθετήριες κοιλότητες μπορεί να βρίσκονται τόσο στη θάλασσα όσο και στη στεριά. Οι πορώδεις αυτές κοιλότητες που στο παρελθόν περιείχαν πετρέλαιο, αέριο, ή αλατούχα διαλύματα (brine) αποτελούν ιδανικά μέσα για την αποθήκευση του CO$_2$, ώστε αυτό να μην έρχεται σε επαφή με την ατμόσφαιρα. Το βάθος στο οποίο επιλέγεται να τροφοδοτηθεί το CO$_2$ είναι συνήθως μεγαλύτερο από 800 μέτρα, γιατί σε αυτές τις συνθήκες πιέσεων και θερμοκρασιών το αέριο παραμένει σε υγρή ή υπερκρίσιμη κατάσταση. Για να αποφευχθεί η διαφυγή του διοξειδίου του άνθρακα αξιοποιείται η μέθοδος της φυσικής παγίδευσης (physical trapping), η οποία περιλαμβάνει ένα αδιαπέραστο στρώμα αποτελούμενο από πηλώδη και σχιστολιθικά πετρώματα (clay and shale rocks).

Παρόλα αυτά, η διαφυγή του αερίου προς την ατμόσφαιρα είναι ένα θέμα που έχει προσεγγίσει πολύ μεγάλο ερευνητικό ενδιαφέρον. Για το λόγο αυτό έχουν αναπτυχθεί προηγμένα συστήματα παρακολούθησης των αποθηκευμένων ποσοτήτων CO$_2$, ώστε να περιοριστούν οι πιθανότητες διαρροής.

Η εναλλακτική πρόταση που περιλαμβάνει την τροφοδότηση του αερίου στα έγκατα των οικεανών δεν έχει ακόμα εφαρμοστεί σε πιλοτική κλίμακα, αλλά βρίσκεται σε ερευνητικό επίπεδο. Η πρόταση περιλαμβάνει την τροφοδότηση του αερίου σε βάθος μεγαλύτερο από 1000 μέτρα, όπου θα απομονωθεί από την ατμόσφαιρα για αιώνες. Το διαλυτοποιημένο διοξείδιο του άνθρακα, τελικά, θα γίνει μέρος του παγκόσμιου κόκλου του άνθρακα. Βέβαια, πειράματα έχουν δείξει πως η αυξημένη συγκέντρωση CO$_2$ στο νερό μπορεί να επηρεάσει τους θαλάσσιους οργανισμούς (μειωμένοι ρυθμοί ανάπτυξης, αναπαραγωγής και κινητικότητας).[51]

3.2.4 Αξιοποίηση του συλλεχθέντος CO$_2$
Μέχρι πρόσφατα το εγχείρημα συλλογής του διοξειδίου του άνθρακα περιοριζόταν μέχρι την αποθήκευση αυτού ώστε να μην επιβαρύνει την ατμόσφαιρα και να αποφεύγονται οι επιπτώσεις που επιφέρει στην υπερθέρμανση του πλανήτη. Πρωτοποριακή έρευνα έχει οδηγήσει στην αξιοποίηση του αερίου αυτού σε διάφορες διεργασίες και έτσι η πρωταρχική διαφορά της συλλογής από την αξιοποίηση είναι ο τελικός προορισμός του συλλεχθέντος CO₂.

Η πρώτη διεργασία στην οποία μπορεί να αξιοποιηθεί άμεσα το αέριο αυτό είναι η τομέας των τροφίμων και των ποτών. Χρησιμοποιείται ως ανθρακικό μέσο (carbonating agent), συντηρητικό, αέριο συσκευασίας, ως διαλύτης για την εκχύλιση αρωμάτων και για τη διαδικασία απομάκρυνσης της καφενίς. Άλλες εφαρμογές περιλαμβάνουν το φαρμακευτικό τομέα, όπως χρησίμευε στη σύνθεση φαρμάκων και ως διεγερτικό του αναπνευστικού κέντρου. Βέβαια οι διαδικασίες αυτές απαιτούν υψηλή καθαρότητα του CO₂ και μπορούν να προκύψουν από βιομηχανίες παραγωγής αμμωνίας.

Μια άλλη χρήση του CO₂ περιλαμβάνει την επεξεργασία και μετατροπή του σε χημικά και καύσιμα. Αυτό μπορεί να επιτευχθεί μέσω αντιδράσεων καρβοξυλίωσης, όπου το CO₂ μπορεί να χρησιμοποιηθεί ως πρόσθετη ένωση για οργανικά μόρια, όπως ανθρακικά και ακρυλικά άλατα καθώς και πολυμερή. Ακόμα, αντιδράσεις αναγωγής μπορούν να “σπάσουν” το διπλό δεσμό μεταξύ του άνθρακα και του οξυγόνου (C=O) και να παραχθούν χημικά, όπως το μεθάνιο, μεθανόλη, ουρία, μυρμηκικό οξύ και αέριο σύνθεσης. Το μεγαλύτερο μειονέκτημα σε αυτές τις μετατροπές είναι πως απαιτούνται μεγάλα ποσά ενέργειας καθώς και καταλύτες με αυξημένη επιλεκτικότητα, μιας και το διοξείδιο του άνθρακα είναι θερμοδυναμικά πολύ σταθερό.
Εικόνα 23 - Αντιδράσεις παραγωγής χημικών από το CO₂[52]

Μια ακόμα εφαρμογή είναι η ανθρακοποίηση των ορυκτών πόρων, όπου το CO₂ αντιδρά με μεταλλικά οξείδια, όπως το μαγνήσιο ή το ασβέστιο, και σχηματίζει ανθρακικά άλατα. Οι αντιδράσεις αυτές μπορούν να πραγματοποιηθούν σε ένα ή πολλαπλά στάδια, οι οποίες είναι γνωστές και ως άμεσες ή έμμεσες ανθρακοποιήσεις. Η χρήση διοξειδίου του άνθρακα υψηλής καθαρότητας δεν είναι απαραίτητη σε αυτού του τύπου τις αντιδράσεις και έτσι η παρουσία προσμίξεων οξείδιων του αζώτου στα καυσαέρια δεν θα επηρεάσει την πρόοδο των αντιδράσεων. Έτσι, ο διαχωρισμός των καυσαερίων μπορεί να παραληφθεί ή να γίνει με μικρότερη ένταση, με αποτέλεσμα το κόστος αντίστοιχα να είναι μικρότερο. Ακόμα ένα πλεονέκτημα της εφαρμογής αυτής είναι ότι τα ανθρακικά άλατα που σχηματίζονται είναι πολύ σταθερά και έτσι δεν υπάρχει κίνδυνος διαφυγής του CO₂ στην ατμόσφαιρα.

Μια από τις πιο χρήσιμες εφαρμογές του διοξειδίου του άνθρακα σχετίζεται με την επαυξημένη ανάκτηση πετρελαίου (Enhanced Oil Recovery –EOR). Η εφαρμογή αυτή σχετίζεται άμεσα με την αποθήκευση του CO₂ σε γεωλογικούς σχηματισμούς που περιέχουν κοιτάσματα πετρελαίου. Φυσικά, όταν οι κουλότητες δεν περιέχουν πλέον
υδρογονάνθρακες χρησιμοποιούνται αποκλειστικά για αποθήκευση του αερίου, αλλά όταν υπάρχουν ακόμα ποσότητες οι οποίες είναι δύσκολο να εξαρθούν τότε αξιοποιείται το αέριο. Ουσιαστικά, το αέριο αποτελεί μέσο για τριτογενή ανάκτηση πετρελαίου και αποτελεί το επόμενο στάδιο από το νερό (δευτερογενής ανάκτηση) λόγω των ιδιοτήτων που έχει. Άλλα μέσα που χρησιμοποιούνται για ανάκτηση του πετρελαίου είναι το φυσικό αέριο, το άζωτο, πολυμερή και τασιενεργές ουσίες, τα οποία δεσμεύουν το πετρέλαιο που είναι εγκλωβισμένο στα πετρώματα. Οι τεχνικές αυτές χρησιμοποιούνται ήδη σε πολλά κοιτάσματα πετρελαίου στην Νορβηγία, στον Καναδά και στην Αμερική για περισσότερο από σαράντα χρόνια. Μέσω του EOR μπορεί να επιτευχθεί ανάκτηση περίπου 30-60% του συνολικού κοιτάσματος, όταν οι πρωτογενείς και δευτερογενείς διαδικασίες μπορούν να εξορύξουν το 20-40%. Το διοξείδιο του άνθρακα σε σχέση με τα προαναφερθέντα μέσα είναι διαθέσιμο σε μεγάλες ποσότητες και συνήθως με χαμηλό κόστος. Τροφοδοτείται στο κοίτασμα σε υπερκρίσιμες συνθήκες και αναμειγνύεται με το αργό πετρέλαιο, ώστε να μειώσει το ιξώδες του. Επομένως, γίνεται πιο εύκολη η άντληση του, με την οποία όμως συμπαρασύρεται και το διοξείδιο του άνθρακα στην επιφάνεια. Παρότι το αέριο αυτό διαχωρίζεται και ξαναχρησιμοποιείται παρατηρούνται μικρές απώλειες προς την ατμόσφαιρα.

3.3 Αξιοποίηση αργιλοφωσφορικών μοριακών ηθμών για συλλογή διοξειδίου του άνθρακα

Για τη δέσμευση του διοξειδίου του άνθρακα υπάρχουν τέσσερις διαφορετικές τεχνικές συλλογής, οι οποίες αναφέρθηκαν στην παράγραφο 3.2.1. Ανάλογα τον τύπο της τεχνικής αλλά και τον τύπο της βιομηχανικής διεργασίας εφαρμόζεται κάθε φορά διαφορετική τεχνολογία διαχωρισμού. Στον Πίνακα 3 συνοψίζονται οι πιο συχνά χρησιμοποιούμενες μέθοδοι για το διαχωρισμό και τη δέσμευση του CO₂. Η πιο επιτυχημένη και ευρέως χρησιμοποιούμενη στη βιομηχανία μέθοδο είναι η προσρόφηση από χημικούς διαλύτες, κυρίως αμίνες. Οι αμίνες βρίσκονται εφαρμογή και στην απομάκρυνση επιπρόσθετων ανεπιθύμητων στοιχείων από το αργό πετρέλαιο, όπως το υδρόθειο. Για τη μονο-αιθανολαμίνη (MEA) έχουν καταγραφεί ποσοστά δέσμευσης του διοξειδίου του άνθρακα 85-90% από τα καυσαέρια εργοστασίου που χρησιμοποιούσε ως πηγή ενέργειας άνθρακα. [54]
<table>
<thead>
<tr>
<th>Τεχνολογία διαχωρισμού</th>
<th>Μέθοδος</th>
</tr>
</thead>
<tbody>
<tr>
<td>Απορρόφηση από χημικούς διαλύτες</td>
<td>Διαλύτες βασισμένοι στην αμίνη, πχ μονο-αιθανολαμίνη (MEA), δι-αιθανολαμίνη (DEA)</td>
</tr>
<tr>
<td></td>
<td>Αλκαλικοί διαλύτες, πχ NaOH και Ca(OH)₂</td>
</tr>
<tr>
<td></td>
<td>Ιονικά υγρά</td>
</tr>
<tr>
<td>Προσρόφηση από στερεούς ροφητές</td>
<td>Στερεοί ροφητές με αμίνες</td>
</tr>
<tr>
<td></td>
<td>Στερεοί διαλύτες με Αλκαλικές γαίες, πχ CaCO₃</td>
</tr>
<tr>
<td></td>
<td>Πορώδεις οργανικές δομές – πολυμερής</td>
</tr>
<tr>
<td>Μεμβράνες</td>
<td>Πολυμερικές μεμβράνες</td>
</tr>
<tr>
<td></td>
<td>Ανόργανες μεμβράνες, πχ ζεόλιθοι</td>
</tr>
<tr>
<td>Κρυογενικός διαχωρισμός</td>
<td>Κρυογενικές συνθήκες</td>
</tr>
<tr>
<td>Προσρόφηση υπό πίεση / κενό (Pressure/Vacuum Swing Adsorption)</td>
<td>Ζεόλιθοι</td>
</tr>
<tr>
<td></td>
<td>Ενεργός άνθρακας</td>
</tr>
<tr>
<td></td>
<td>Αργυλοφωσφορικοί μοριακοί ηθμοί</td>
</tr>
</tbody>
</table>

Η συλλογή και ο διαχωρισμός του CO₂ αποτελεί το 60-80% του συνολικού κόστους της τεχνολογίας συλλογής και αποθήκευσης του αερίου, οπότε είναι απαραίτητη η περαιτέρω εξέλιξη νέων μεθόδων με μικρότερο κόστος, λιγότερη απαιτούμενη ενέργεια και πιο λιγότερο τοξικό.

Ετσι, κατεύθυνση αυτή αναπτύχθηκαν οι τεχνικές προσρόφησης από πορώδη υλικά υπό πίεση και υπό κενό (Pressure/ Vacuum Swing Adsorption- PSA & VSA). Οι κατάλληλοι ροφητές μπορούν να διαχωρίσουν ένα "βαρύ" συστατικό από ένα "ελαφρύτερο" και η τεχνική αυτή μπορεί να εφαρμοστεί σε καυσαέρια τα οποία αποτελούνται κυρίως από άζωτο ενώ το "βαρύ" συστατικό θεωρείται το διοξείδιο του άνθρακα. Τα υλικά τα οποία έχουν ερευνηθεί για να αξιοποιηθούν σε αυτή τη τεχνική πρέπει να πληρούν κάποια συγκεκριμένα κριτήρια: εύκολη αναγέννηση του υλικού, μικρή πτώση πίεσης, υψηλή ροφητική ικανότητα ως προς το CO₂, υψηλή επιλεκτικότητα ως προς το CO₂ σε σχέση με άλλα στοιχεία (πχ άζωτο). Τα υλικά που έχουν ερευνηθεί για την τεχνική της φυσιορόφησης είναι οι πορώδεις μοριακοί ηθμοί, κυρίως ζεόλιθοι (ζεόλιθος 13Χ, μορδενίτης κα), πολυμερικές μεμβράνες, ενεργός άνθρακας και μέταλλο οργανικά δίκτυα (metal – organic frameworks – MOF’s).

Οι αργυλοφωσφορικοί μοριακοί ηθμοί (AlPO’s) εμφανίζουν πολλές ομοιότητες με τους ζεόλιθους, οι οποίοι περιέχουν πυρίτιο στο δίκτυο τους αντί για φώσφορο, και για αυτό προτάθηκαν ως μέσα για τη ρόφηση του διοξειδίου του άνθρακα. Επίσης,
εμφανίζουν αυξημένη σταθερότητα σε υψηλές πιέσεις και θερμοκρασίες καθώς και εύκολη αναγέννηση ώστε να χρησιμοποιηθούν για πολλούς κύκλους ρόφησης.

Μέχρι στιγμής έχουν αναφερθεί στη βιβλιογραφία περιπτώσεις όπου τα AIPO’s παρουσιάζουν ικανοποιητική ροφητική ικανότητα. Η ικανότητα ρόφησης κάθε δομής εξαρτάται από διάφορους παράγοντες όπως το μέγεθος των πόρων, το φορτίο του δικτύου, η κατανομή μεγέθους των πόρων, η κρυσταλλικότητα κ.α. Ακόμα, πολύ σημαντικό ρόλο διαδραματίζει η θερμοκρασία και η πίεση στην οποία πραγματοποιείται η ρόφηση. Η διεργασία αυτή είναι εξόχοςμη και για αυτό ευνοείται σε χαμηλότερες θερμοκρασίες. Αυτό μπορεί να φανεί καλύτερα στο Διάγραμμα 4 όπου εξετάζονται τέσσερις διαφορετικές δομές AIPO’s (AIPO-17,18,25,53), οι οποίες είναι μεν όλες οκταμελείς αλλά παρουσιάζουν διαφορές στις ροφητικές ικανότητες.

Διάγραμμα 4 - Μείωση της ροφητικής ικανότητας με αύξηση της θερμοκρασίας σε δομές AIPO [49]

Σε άλλα πειράματα, έχει εξεταστεί η δομή AIPO-14 η οποία έχει κανάλια με διάμετρο 3.8 Å. Στο σημείο αυτό αξιοποιεί η σημειώσεις ότι η κινητική διάμετρος του μορίου του CO₂ είναι 3.3 Å, ενώ του CH₄ είναι 3.8 Å. Ετσι, η δομή αυτή μπορεί να αποτελέσει ιδανικό και εκλεκτικό ροφητή για το CO₂ και πράγματι τα αποτελέσματα της ρόφησης ήταν αρκετά υψηλά, 2.71 mmol g⁻¹ στα 100 kPa και τους 273 K. [55]

Διάγραμμα 5 - Ισόθερμη ρόφησης CO₂ (■) και CH₄ (●) από AIPO-14 [55]
Πειραματικό μέρος

Κεφάλαιο 4° – Σύνθεση αργιλοφωσφορικών μοριακών ηθμών

4.1 Σύνθεση AlPO₄-5

Οι μικροπορώδεις κρύσταλλοι AlPO₄-5, με δομή τύπου AFI, παρασκευάστηκαν με την υδροθερμική μέθοδο, βασιζόμενοι σε προηγούμενες επιτυχημένες συνθέσεις που αναφέρονται στη βιβλιογραφία [5, 23, 30]. Η μοριακή αναλογία που εφαρμόστηκε για την παραγωγή των AlPO₄-5 ήταν:

\[
1 \text{Al}_2\text{O}_3 : 1.3\text{P}_2\text{O}_5 : 1.2 \text{TEA} : x \text{H}_2\text{O}
\]

Όπου το x πήρε τιμές 100 και 400 για τα δείγματα τα οποία συντέθηκαν, με σκοπό να προκύψει διαφορετική μορφολογία κρυστάλλων.

Τα αντιδραστήρια που χρησιμοποιήθηκαν για να ληφθεί η παραπάνω μοριακή αναλογία ήταν το ισοπροποξείδιο του αργιλίου (Merck), το ορθοφωσφορικό οξύ (85% σε H₂O, Sigma Aldrich) και η τριαιθυλαμίνη (Merck).

Η πειραματική διαδικασία περιλαμβάνει, αρχικά, τη διαλυτοποίηση της κατάλληλης ποσότητας του ισοπροποξειδίου του αργιλίου από την αντίστοιχη ποσότητα απιονισμένου νερού. Με τη βοήθεια μαγνητικού αναδευτήρα το διάλυμα αφέθηκε για 3 ώρες. Ακολούθησε η στάγδην προσθήκη του ορθοφωσφορικού οξέος και το διάλυμα αναδεύτηκε για 1 ώρα. Τέλος, προστέθηκε στάγδην η κατάλληλη ποσότητα του οργανικού μορφοποιητή πλέγματος, δηλαδή της τριαιθυλαμίνης, και το πρόδρομο κρύσταλλων AFI σχηματίστηκε. Ακολούθησε ο διαχωρισμός του κρυσταλλικού προϊόντος με τη βοήθεια φυγοκέντρου και συνεχείς εκπλύνσεις. Για την πλήρη απομάκρυνση της υγρασίας από τα δείγματα που παράχθηκαν έγινε ξήρανση, ενώ για την απομάκρυνση του οργανικού
-mortopoiethi plegmatos pragmatopoiethi purosth stous 600 °C. To thermodkraasiaiko
programa perieilamvane ryhmo thermavsei 2,5 °C/leptto mexhri tous 80 °C gia 30
lepta kai 2,5 °C/leptto mexhri tous 600 °C gia 5,5 orez.

4.2 Synthese metaalliki upokatestemenvwn AlPO₄-5 (MeAPO-5) kai
enwsmatwso puritio (SAPO)

H dhemioorhgia ton metaallikon upokapestemenvon argilofofosforikon moriaikon etmwn
akolouthei akribh ton idia peiramatiiki diadikasia pou anaferhke sthn
proegoymene evdstita, me tin prosothike tis kataallhlipe pigh gia tin enswomathse
 tou metallon (Me) sto dikto. Sta plaisia tis parousias diplomatiiki ergasiais ta
metalla ta opoia upokapestathikan sto krystallikiko dikto epana to puritio, to
magnhio, to kohaltio kai o sidhros.

H moriak analogia pou chrisimopoiethke auti tis fora epana:

1 Al₂O₃: 1.3P₂O₅: 1.2 TEA: y Me: 100 H₂O

Opou y h molariki analogia ton metaallon pou upokapestathike sti domi.

Ariki, ta MeAPO’s pou demioorhghikan epilexhke na ezhoun analogia 100:5 ws
pros to argilo sto pridromou migma. H tima auti epilexhke gia na uparxei koinh
bas rhima anafrofis gia ola ta deigmaata alla kai epieidhi, smfewna me tin bibliographia,
sti tima auti h krystallikihtita epana wshli gia ola ta upokapestemena AlPOs. [23]

Ta antidrasthria pou chrisimopoiethikan epana:

- Orotropurtikiko tetra-aithulio (Tetraethyl orthosilicate – TEOS, Merck)
- Xloriio.nio magnhio (Merck)
- Tetraaidrikoo oxiiko kohaltio (Cobalt (II) acetate tetrahydrate 98%, Sigma-
 Aldrich)
- Anidros vitriiko sidhros (Iron (III) nitrate nonahydrate, Merck)

H monadik dhiafora pou entopizetai se schhs me tin technik synthehseis pou eche ihd
perigraphei einai pio 1 orha meta tia prosothike tis triaithulamh, akolouthei h
prosothike tou antidrasthrion pou periexhe to metallon. To orotropurtikiko tetra-
aithulio einai to mono vgrh antidrasthrio kai mporei na prosethei apeudevias sto
pridromo dialuma, enw ta upoloita tria prepei prwtta na dialuotopoiethoun se mikri
posotita vepo. H posotita auti tis vepou pou chrisimopoiethke gia tis
διαλυτοποίηση των μεταλλικών αντιδραστηρίων αφαιρέθηκε από την αρχική ποσότητα που διαλυτοποίησε το ισοπροποξείδιο του αργιλίου.

Στην περίπτωση που η μοριακή αναλογία του μετάλλου είναι διαφορετική από 5%, υπολογίζεται η νέα ποσότητα που πρέπει να προστεθεί και ακολουθείται ακριβώς η ίδια διαδικασία σύνθεσης MeAPO. Έτσι, μόλις βρέθηκε το MeAPO με την καλύτερη ροφητική ικανότητα δημιουργήθηκαν δύο ακόμα δείγματα με το συγκεκριμένο μετάλλο σε μοριακές αναλογίες 2.5%, 7.5% και 10%.

4.3 Μερική Πύρωση (Partial Calcination) του AlPO₄-5
Για τα δημιουργία του πορώδους δικτύου εντός των αργιλοφωσφορικών μοριακών δομών είναι απαραίτητη η πύρωση (calcination) του δείγματος σε υψηλή θερμοκρασία, ώστε ο οργανικός μορφοποιητής πλέγματος να αποσυντεθεί και να εξέλθει από τη δομή. Αυτή η θερμοκρασία πρέπει να επιλεγεί με προσοχή διότι πολύ υψηλές θερμοκρασίες μπορούν να ανοίγουν στην κατάρρευση της δομής. Βέβαια, τα AIPO’s εμφανίζουν εξαιρετική αντοχή έως και τους 800 °C.

Αφού παράχθηκε μια παρτίδα AlPO₄-5, με x=100 για το νερό, και πραγματοποιήθηκε η έξηρανση επιλέξθηκαν πέντε θερμοκρασίες στις οποίες θα γίνονταν η πύρωση των δομών. Οι θερμοκρασίες αυτές ήταν στους 300, 400, 500, 600 και 700 °C. Οι συνθήκες που πραγματοποιήθηκε η πύρωση ήταν οξειδωτικές μιας και ο φούρνος ήταν ανοιχτός στην ατμόσφαιρα. Το θερμοκρασιακό πρόγραμμα που ακολουθήθηκε ήταν το ίδιο με αυτό που περιγράφηκε στην παράγραφο 4.1, με τη διαφορά του τελικού σημείου να μεταβάλλεται ανάλογα το δείγμα.

4.4 Πυρόλυση του AlPO₄-5
Σε άλλη παρτίδα AlPO₄-5 επιλέξθηκε η απομάκρυνση του οργανικού μορφοποιητή πλέγματος με πυρόλυση. Για την τεχνική αυτή επιλέξθηκαν πέντε θερμοκρασίες στους 200, 240, 300, 400 και 700 °C και χρησιμοποιήθηκε αδρανής ατμόσφαιρα με τη χρήση αερίου αξώντου. Οι θερμοκρασίες 200 και 240 °C επιλέξθηκαν ύστερα από θερμογραφική ανάλυση (TGA) υπό ροή αξώντου που βρέθηκε στη βιβλιογραφία και υποδεικνύει τη θερμοκρασία απομάκρυνσης της τριαιθυλαμίνης. [56] Το θερμοκρασιακό πρόγραμμα που ακολουθήθηκε ήταν το ίδιο με αυτό της παραγράφου 4.1.
Κεφάλαιο 5ο – Χαρακτηρισμός δειγμάτων

Για τον προσδιορισμό της κρυσταλλικότητας των δειγμάτων που συντέθηκαν χρησιμοποιήθηκε η περίθλαση ακτίνων Χ (X-Ray Diffraction). Τα δείγματα μετρήθηκαν από το Panalytical X’Pert Pro Powder Diffractometer χρησιμοποιώντας Cu-Kα ακτινοβολία, μήκος κύματος λ=1.5406 Å, τάση 40 kV και ένταση ρεύματος 40 mA. Η ταχύτητα της ανάλυσης ήταν 0.02 μοίρες κάθε 30 δευτερόλεπτα.

Η διερεύνηση της μορφολογίας των δειγμάτων πραγματοποιήθηκε με τη βοήθεια ηλεκτρονιακού μικροσκοπίου σάρωσης (Scanning Electron Microscopy – SEM). Το όργανο που χρησιμοποιήθηκε για την ανάλυση ήταν το FEI Quanta 200 ενώ στα δείγματα εφαρμόστηκε ταινία άνθρακα (carbon tape) καθώς και επίστρωση με χρυσό (gold coating) ώστε να αυξηθεί η αγωγιμότητα των δειγμάτων. Οι μετρήσεις πραγματοποιήθηκαν υπό υψηλό κενό και υπό τάση 30 kV.

Η προσρόφηση του διοξειδίου του άνθρακα πραγματοποιήθηκε με τη βοήθεια σταθμικού αναλυτή ρόφησης (IsoSORP STATIC 3xV-MP) της εταιρίας Rubotherm. Ο ζυγός μαγνητικών εδράνων (Magnetic Suspension Balance – MSB) μετρά με ακρίβεια τη μάζα των δειγμάτων και τη δόση του αερίου ώστε να προσδιορίσει την ισορροπία της προσρόφησης. Αρχικά, τα δείγματα επεξεργάστηκαν υπό κενό στους 150 °C για 3 ώρες, ώστε να απομακρυνθεί η υγρασία και άλλα πτητικά μέχρι την επίτευξη σταθερής μάζας. Ο MSB διαθέτει τρεις θέσεις από τις οποίες μπορεί να μετρήσει το σημείο μηδέν (zero point) στη θέση 1, το βάρος του δείγματος μαζί με το δειγματοφορέα στη θέση 2 ενώ στη θέση 3 προσμετράται και το βάρος ενός βαριδιού από τιτάνιο, γνωστού όγκου. Μέσω της μεταβολής του βάρους του βαριδιού, η πυκνότητα και άρα κι ο όγκος του δείγματος μπορεί να μετρηθεί επιτόπου. Με γνωστή την πυκνότητα και τον όγκο του δείγματος γίνεται μια διόρθωση της άνωσης (buoyancy) στη μάζα του δείγματος. Το δείγμα στον δειγματοφορέα από ανοξείδωτο χάλυβα συμπιέστηκε μέχρι τα 4 bar. Παράλληλα, γινόταν συνεχής μέτρησης της μάζας του δείγματος η οποία αντιστοιχούσε στην προσρόφηση του CO2 και καθοριζόταν αυτόματα από το σύστημα IsoSORP και τον μαγνητικό ζυγό MSB, όταν επιτυγχανόταν ισορροπία. Έτσι, μπορεί να υπολογιστεί η δυνατότητα ρόφησης διοξειδίου του άνθρακα σε mmol/g.
Αποτελέσματα και Αξιολόγηση

Κεφάλαιο 6ο – Χαρακτηρισμός

6.1 Κρυσταλλικότητα

Τα δείγματα που συντέθηκαν εξετάστηκαν ως προς την κρυσταλλικότητα και βρέθηκε πως όλα αποτελούνται από μια καθαρά κρυσταλλική φάση, χωρίς να περιλαμβάνουν άμορφες περιοχές. Επίσης, πραγματοποιήθηκε ταυτοποίηση της δομής ώστε να εξακριβωθεί κάθε φορά εάν η δομή AFI του AlPO₄-5 είχε επιτευχθεί.

6.1.1 Μερική Πύρωση AlPO₄-5

Στα δείγματα που πραγματοποιήθηκε μερική πύρωση (partial calcination) διερευνήθηκε η κρυσταλλικότητα στη μήτρα που χρησιμοποιήθηκε για τη δημιουργία των επιμέρους δειγμάτων. Το υλικό πριν την πύρωση εμφανίζει κρυσταλλική δομή AFI, συνεπώς το ίδιο αποτέλεσμα αναμένεται και για τις ενδιάμεσες θερμοκρασίες από 300 μέχρι 600 °C. Προκειμένου να επαληθευτεί η σταθερότητα της δομής πάνω από τους 600 °C, θερμοκρασία στην οποία πραγματοποιούταν καθ’ όλη τη διάρκεια των πειραμάτων η πύρωση, έγινε ανάλυση XRD του δείγματος στους 700 °C. Όπως γίνεται φανερό, η δομή AFI δεν επηρεάζεται από την αυξημένη θερμοκρασία αφού παρατηρούνται οι περιθλάσεις στις ίδιες γωνίες 20.

![Diagram 6 - Comparison of XRD diagrams for AlPO₄-5 after partial calcination at 600 °C and 700 °C](image)
Ιδιαίτερο ενδιαφέρον παρουσιάζει το χρώμα των δειγμάτων που παρασκευάστηκαν ύστερα από την μερική πύρωση. Η αρχική μήτρα που παράχθηκε, ύστερα από την ξήρανση, είχε λευκό χρώμα όχι όμως και όλα τα υλικά που επεξεργάστηκαν στη συνέχεια. Πιο συγκεκριμένα, μεταξύ των θερμοκρασιών 300 °C και 500 °C τα AlPO's απέκτησαν ένα καφέ χρώμα, το οποίο όσο αυξανόταν η θερμοκρασία ήταν πιο ανοιχτό. Στους 600 °C και 700 °C τα υλικά πήραν και πάλι το λευκό χρώμα το οποίο είχαν πριν την θερμική επεξεργασία.

Εικόνα 24 - AlPO₅ τα οποία έχουν πυρολυθεί στους: a) 300 °C, b) 400 °C, c) 500 °C, d) 600°C, e) 700°C

Το καφέ χρώμα υποδηλώνει ότι η μονοδιάσταση διάχυση δια μέσω των πόρων παρεμποδίζεται λόγω πλήρωσης των πόρων από στοιχεία που δεν ανήκουν στο δίκτυο. Κυρίως, πρόκειται για την άνθρακα ο οποίος προέρχεται από την αμίνη που χρησιμοποιείται ως οργανικός μορφοποιητής πλέγματος και ο οποίος εξέρχεται από το υπάρχον δίκτυο του AlPO λόγω της υψηλής θερμοκρασίας. Όταν το χρώμα γίνει και πάλι λευκό, η δομή έχει απελευθερωθεί [57].

6.1.2 Μεταλλικά υποκατεστημένα AlPOs (MeAPOs) και ενσωμάτωση πυριτίου (SAPOs)

Όσον αφορά τα μεταλλικά υποκατεστημένα AlPOs (MeAPOs) που συντήθηκαν είναι φανερό πως όλα έχουν την ίδια μορφολογία με το AlPO₅-5, αφού οι χαρακτηριστικές κορυφές στο διάγραμμα XRD συμπίπτουν με το διάγραμμα της βιβλιογραφίας. Επίσης, όλα τα δείγματα παρουσιάζουν μια καθαρά κρυσταλλική φάση αφού παρατηρούνται μόνο οξείες κορυφές. Όλοι οι αργιλοφωσφορικοί μοριακοί ηθμοί δημιουργήθηκαν
χρησιμοποιώντας τις ίδιες μοριακές αναλογίες, η μολαρική αναλογία του νερού ήταν 100 και η συγκέντρωση του μετάλλου ήταν 5%. Ακόμα, οι θερμοκρασίες κρυστάλλωσης και πύρωσης ήταν κοινές για όλα τα δείγματα, στους 160 και 600 ºC αντίστοιχα.

Διάγραμμα 7 - Γράφημα XRD των μεταλλικώς υποκατεστημένων AlPO’s με μοριακή αναλογία (Al: 1.3 P: 0.05 Me: 1.2 TEA: 100 H₂O) και του AlPO₄-5

Με μια προσεκτική ματιά γίνεται φανερό πως οι κορυφές κάποιων μεταλλικώς υποκατεστημένων AlPO’s δεν συμπίπτουν επακριβώς με αυτή του AlPO₄-5. Πιο συγκεκριμένα, ως ένδειξη για τη υποκατάσταση χρησιμοποιήθηκαν οι χαρακτηριστικές κορυφές των δομών AFI που εντοπίζονται στο διάστημα μεταξύ 19° και 22.5°. Οι κορυφές αυτές αντιστοιχούν σε σκέδαση από τα κρυσταλλογραφικά επίπεδα (210), (002) και (211), τα οποία φαίνονται και στο Διάγραμμα 8. Οι μικρές αυτές μετατοπίσεις των κορυφών είναι λογικές διότι τα ετεροάτομα που εισέρχονται στις δομές έχουν διαφορετική ιοντική ακτίνα σε σχέση με το άτομο το οποίο υποκαθιστούν. Ακόμα, οι μετατοπίσεις αυτές υποδηλώνουν και την επιτυχή ενσωμάτωση των μετάλλων στις αργιλοφωσφορικές δομές. [58]
6.1.3 Υπολογισμός παραμέτρων μοναδιαίας κυψελίδας (Unit Cell Parameters)

Όπως αναφέρθηκε και στην προηγούμενη παράγραφο, η ενσωμάτωση των μετάλλων στο δίκτυο των αργιλοφωσφορικών μοριακών ηθμών μπορεί να γίνει αντιληπτή μέσω των μετατοπίσεων που διακρίνονται στο διάγραμμα XRD. Προκειμένου να επιβεβαιωθούν οι μεταβολές που πραγματοποιούνται στο μέγεθος του δικτύου λόγω της παρουσίας των μετάλλων θα υπολογιστούν οι παράμετροι της μοναδιαίας κυψελίδας στις τρεις διαστάσεις.

Η ανάλυση XRD βασίζεται στην εξίσωση του Bragg, σύμφωνα με την οποία:

\[n\lambda = 2d \sin \theta \]

Οπου n ακέραιος αριθμός, \(\lambda \) είναι το μήκος κύματος της ακτινοβολίας, \(d \) η απόσταση μεταξύ δύο επιπέδων και \(\theta \) η γωνία στην οποία πραγματοποιείται η περίθλαση.
Για τα AlPO₄-5 είναι γνωστό πως οι κυψελίδες έχουν εξαγωνική διάταξη και συνεπώς ισχύει \(a = b \neq c \). Ακόμα, για τα εξαγωνικά συστήματα η εξίσωση που συσχετίζει τη γωνία περίθλασης, το μήκος κύματος και τις διαστάσεις της κυψελίδας είναι:

\[
\frac{4}{3}\left(\frac{h^2 + hk + k^2}{a^2}\right) + \frac{l^2}{c^2} = \frac{(4 \sin^2 \theta)}{\lambda^2}
\]

Όπου \(h, k, l \) είναι οι δείκτες Miller (Miller Indices), \(\theta \) είναι η γωνία στην οποία παρατηρείται η κορυφή, \(\lambda \) το μήκος κύματος της ακτινοβολίας, \(a = b \) και \(c \) οι διαστάσεις της κυψελίδας.

Τα \(h, k, l \) αντιστοιχούν στα κρυσταλλογραφικά επίπεδα όπου εμφανίζονται οι κορυφές. Για τους υπολογισμούς χρησιμοποιήθηκε η πρώτη κορυφή όπου εντοπίζεται σε \(2\theta \approx 7,6 \) Å και αντιστοιχεί στο επίπεδο 100. Έτσι, για τους δείκτες Miller ισχύει

- \(h=1 \)
- \(k=0 \)
- \(l=0 \)

Συνδυάζοντας τις δύο προηγούμενες εξισώσεις προκύπτει η τελική εξίσωση μέσω της οποίας μπορεί να υπολογιστεί το \(a \):

\[
\frac{4}{3}\left(\frac{1}{\alpha^2}\right) = \frac{1}{d^2} \Rightarrow \alpha = 2d \sqrt{3} \frac{3}{3}
\]

Για τον υπολογισμό του \(c \) θα αξιοποιηθεί η κορυφή που αντιστοιχεί στο επίπεδο 002, έτσι ώστε οι δείκτες Miller \(h, k \) να είναι ίσοι με το μηδέν ενώ ο δείκτης \(l \) να είναι 2.

Συνδυάζοντας ξανά τις δύο αρχικές εξισώσεις προκύπτει:

\[
c^2 = 4d^2 \leftrightarrow c = 2d
\]

Με τη βοήθεια του υπολογιστικού προγράμματος Origin διαπιστώθηκε με ακρίβεια η γωνία πρόσπτωσης 20 στην οποία αντιστοιχούσε η κάθε κορυφή για τα μεταλλικά υποκατεστημένα AlPOs αλλά και για το αρχικό δείγμα AlPO₄-5. Οι γωνίες 20 καθώς και το μέγεθος των μοναδιαίων κυψελίδων συνοψίζονται στον Πίνακα 4. [59]
Πίνακας 4 - Μεταβολή διαστάσεων μοναδιαίας κυψελίδας, ύστερα από την υποκατάσταση μετάλλων στο δίκτυο των ALPO_{5}

<table>
<thead>
<tr>
<th>Δείγμα</th>
<th>2θ (100)</th>
<th>d</th>
<th>Παράμετρος κυψελίδας (a=b)</th>
<th>2θ (002)</th>
<th>d</th>
<th>Παράμετρος Κυψελίδας (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPO-5</td>
<td>7,67336</td>
<td>11,51202</td>
<td>13,29293655</td>
<td>21,44336</td>
<td>4,140543</td>
<td>8,281085594</td>
</tr>
<tr>
<td>FeAPO-5</td>
<td>7,62336</td>
<td>11,58741</td>
<td>13,37999218</td>
<td>21,12136</td>
<td>4,202933</td>
<td>8,405866866</td>
</tr>
<tr>
<td>SAPO-5</td>
<td>7,64036</td>
<td>11,56167</td>
<td>13,35026533</td>
<td>21,32536</td>
<td>4,163186</td>
<td>8,326372871</td>
</tr>
<tr>
<td>MgAPO-5</td>
<td>7,62336</td>
<td>11,58741</td>
<td>13,37999218</td>
<td>21,32536</td>
<td>4,163186</td>
<td>8,326372871</td>
</tr>
<tr>
<td>CoAPO-5</td>
<td>7,60636</td>
<td>11,61327</td>
<td>13,409852</td>
<td>21,30836</td>
<td>4,166469</td>
<td>8,332938892</td>
</tr>
</tbody>
</table>

Πράγματι γίνεται αντιληπτό, πως υπάρχει αύξηση των κρυστάλλων τόσο στις διαστάσεις a και b όσο και στην c, σε σχέση με το αρχικό δίκτυο AlPO_{5}. Οι μεταβολές αυτές των διαστάσεων είναι αναμενόμενες μιας και τα μόρια τα οποία εισέρχονται στο δίκτυο διαθέτουν μεγαλύτερες ακτίνες σε σχέση με αυτά που υποκαθιστούν. Η μεγαλύτερη διόγκωση των διαστάσεων a και b πραγματοποιήθηκε από το κοβάλτιο ενώ στη διάσταση c τη μεγαλύτερη επίδραση είχε ο σίδηρος. Η ιοντική ακτίνα του αργιλίου είναι 0,53 Å και όλα τα μέταλλα που χρησιμοποιήθηκαν για υποκατάσταση έχουν μεγαλύτερη ακτίνα (σίδηρος 0,645 Å, μαγνήσιο 0,72 Å, κοβάλτιο 0,745 Å). Παρότι και το μαγνήσιο έχει ιοντική ακτίνα παρόμοια με αυτή του κοβαλτίου η διόγκωση που προκαλεί φαίνεται να είναι εξίσου επιμερισμένη και στις τρεις διαστάσεις. Τέλος, ιδιαίτερα ενδιαφέρον παρουσιάζει η υποκατάσταση του πυρίτιου στη δομή του ALPO μιας και η ιοντική του ακτίνα είναι 0,4 Å. Βέβαια, το πυρίτιο υποκαθιστά αργιλικά το φωσφόρο, ο οποίος έχει ιοντική ακτίνα 0,38 Å. Αφού λοιπόν παρατηρείται διόγκωση επιβεβαιώνεται ο ισχυρισμός πως ο μηχανισμός SM2 είναι αυτός που υπερισχύει. Εάν πραγματοποιούσαν ταυτόχρονη υποκατάσταση και μορίων αργιλίου τότε θα έπρεπε να παρατηρηθεί το αντίστροφο φαινόμενο δηλαδή συρρίκνωση.

6.1.4 Επίδραση συγκέντρωσης μετάλλου

Αφού διαπιστώθηκε πως το υλικό στο οποίο είχε υποκατασταθεί ο σίδηρος είχε τη μεγαλύτερη ροφητική ικανότητα συντέθηκαν τρία ακόμα δείγματα με διαφορετικές συγκεντρώσεις σιδήρου. Ετσι, συντέθηκαν τα δείγματα με μοριακή αναλογία σιδήρου ως προς το αργίλιο 2.5:100, 7.5:100 και 10:100.
Διάγραμμα 9 - Διάγραμμα XRD για υποκαταστημένα AlPO₄-5 με διαφορετικές συγκεντρώσεις σιδήρου. Ξεκινώντας από κάτω απεικονίζονται τα δείγματα με μοριακή αναλογία 2.5, 5, 7.5 και 10%.

Όπως φαίνεται από το Διάγραμμα 9 όλες οι δομές αντιστοιχούν στη δομή AFI και είναι κρυσταλλικά. Βέβαια, τα δείγματα 2.5% και 7.5% δεν έχουν κορυφές υψηλής έντασης γεγονός που υποδηλώνει την ύπαρξη κάποιων άμορφων περιοχών.

6.1.5 AlPO₄-5 με διαφορετική μορφολογία κρυστάλλων

Για τη σύνθεση των δειγμάτων ακολουθήθηκε η ίδια πειραματική διαδικασία, με μόνη διαφορά τη μολαρική συγκέντρωση του νερού. Στην πρώτη περίπτωση η σχέση μεταξύ αργιλίου και νερού ήταν 1:100, ενώ στη δεύτερη ήταν 1:400. Όπως γίνεται διακριτό από το Διάγραμμα 10 και τα δύο δείγματα που συντέθηκαν ήταν κρυσταλλικά εμφανίζοντας οξείες κορυφές. Άμορφες περιοχές δεν παρατηρούνται μιας και δεν υπάρχουν ευρείες διαμορφώσεις που θα υποδείκνυαν την ύπαρξη αυτών.
Διάγραμμα 10 – Διάγραμμα XRD για δείγματα AlPO₅-5 με διαφορετική συγκέντρωση νερού 100 & 400

6.2 Μορφολογία

Η μορφολογία των δειγμάτων διαπιστώθηκε μέσω των εικόνων από το SEM, με σκοπό την επιβεβαίωση της κρυσταλλικότητας από τα διαγράμματα XRD αλλά και την διερεύνηση των διαφόρων δομών. Τα πυρωμένα και πυρολυμένα δείγματα δεν εξετάστηκαν μιας και η απομάκρυνση του οργανικού μορφοποιητή πλέγματος δεν μπορεί να ανιχνευθεί από την ανάλυση αυτή αφού δεν επηρεάζει τη μορφολογία του κρυστάλλου.

6.2.1 Μεταλλικά υποκατεστημένα AlPOs (MeAPOs) και ενσωμάτωση πυριτίου (SAPOs)

Τα υποκατεστημένα AlPO που συντέθηκαν είχαν όλα μοριακή αναλογία νερού 100 ως προς το αργίλιο με αποτέλεσμα να έχουν όλα σφαιρικές διαμορφώσεις. Επίσης, όλα τα δείγματα είχαν μοριακή αναλογία μετάλλου προς αργίλιο 5:100.
FeAPO-5

Το δείγμα που συντέθηκε ύστερα από την υποκατάσταση του σιδήρου εμφανίζει αυξημένη κρυσταλλικότητα όπως φαίνεται από την εικόνα SEM, όπου παρατηρούνται αρκετοί ευμεγέθεις σφαιρικοί κρύσταλλοι. Προχωρώντας σε μεγαλύτερη μεγέθυνση γίνεται φανερή η δομή του κάθε κρύσταλλου που αποτελείται από εξαγωνικές σφαιρικές διαμορφώσεις, στην οποία κάθε πλευρά περιέχει παράλληλα διευθετημένα φύλλα. Ιδιαίτερο ενδιαφέρον προκαλεί το διάκενο που εμφανίζεται στον άξονα της σφαίρας, μια διαμόρφωση που εμφανίζεται μόνα στα δείγματα του σιδήρου με συνεπή τρόπο. Τέλος, στην υψηλότερη μεγέθυνση παρατηρούνται κάποιες διαμορφώσεις με μορφή πλάκας (plate-like) οι οποίες δεν έχουν κρυσταλλωθεί πλήρως σε σφαίρες.

MgAPO-5

Η υποκατάσταση μαγνησίου στις δομές των AlPO₄-5 οδήγησε στη δημιουργία σφαιρικών κρύσταλλων όπως ήταν αναμενόμενο. Οι κρύσταλλοι που παράχθηκαν είχαν μικρότερες διαστάσεις σε σχέση με τους αντίστοιχους των FeAPOs και παρουσίαζαν κάποια διάκενα τα οποία όμως δεν παρατηρούνται με συνέπεια στον άξονα τους. Πιθανότατα τα διάκενα αυτά σχετίζονται με την μη πλήρη κρυστάλλωση του MgAPO-5. Η επιφάνεια των κρύσταλλων φαίνεται πως αποτελείται από πλήθος επίπεδων φύλλων διευθετημένα στο τυχαίους προσανατολισμούς και εμφανίζουν υψηλή συνεκτικότητα. Τα φύλλα αυτά δεν παρουσιάζουν ομοιομορφία και έχουν διαφορετικές διαστάσεις.
Η σύνθεση δειγμάτων με την προσθήκη κοβαλτίου στις δομές οδήγησε στη δημιουργία σφαιρών όμως μπορούν να παρατηρηθούν και κάποιες διαμορφώσεις ράβδων και πλακών. Υπάρχει δηλαδή μια ανομοιογένεια των κρυστάλλων καθώς επίσης κάποιες από τις σφαιρικές διαμορφώσεις εμφανίζουν οπές ενώ άλλες είναι πλήρως ανεπτυγμένες. Τα επίπεδα που δημιουργούν τον κρύσταλλο φαίνεται να είναι προσανατολισμένα και να είναι αρκετά πυκνά διευθετημένα.

SAPO-5

Στα AlPO₄-5 που πραγματοποιήθηκε ενσωμάτωση πυριτίου παρατηρείται ανομοιογένεια στους κρυστάλλους που έχουν παραχθεί τόσο στο μέγεθος όσο και στο σχήμα. Επίσης, παρατηρούνται κάποιες περιοχές όπου δεν εμφανίζονται διακριτές κρυσταλλικές διαμορφώσεις, γεγονός που υποδεικνύει την ύπαρξη κάποιων άμορφων
σχηματισμών. Τέλος, παρατηρούνται άρκετοι σφαιρικοί κρύσταλλοι οι οποίοι έχουν ενωθεί στη μορφή συσσωματωμάτων.

6.2.2 Επίδραση συγκέντρωσης μετάλλου

Για τη διερεύνηση της επίδρασης της συγκέντρωσης του σιδήρου δημιουργήθηκαν τα δείγματα με μοριακή αναλογία ως προς το αργίλιο 2.5:100, 7.5:100 και 10:100. Όπως φαίνεται στην Εικόνα 29 τα δείγματα με 2.5% αναλογία σιδήρου αποτελούνται από σφαίρες, ράβδους καθώς και ακανόνιστες διαμορφώσεις που παραπέμπουν σε πλάκες. Το μέγεθος ποικίλει όμως τα σωματίδια αυτά είναι μικρότερα σε σχέση με αυτά που είχαν αναλογία 5%.

Αυξάνοντας τη μοριακή αναλογία σε 7.5% και 10% παρατηρούμε πως οι σφαιρικές διαμορφώσεις αποτελούν την κύρια μορφολογία που έχουν οι κρύσταλλοι. Όμως η δείγμα με 7.5% εμφανίζει ακόμα κάποια ραβδόμορφα υλικά τα οποία όμως έχουν αυξηθεί σε διαστάσεις. Ακόμα, παρατηρείται πως όσο αυξάνεται η συγκέντρωση τόσο
αυξάνονται και οι διαστάσεις των κρυστάλλων γεγονός που υποδηλώνει την μεγαλύτερη υποκατάσταση του σιδήρου στις δομές AFI.

Σε όλα τα δείγματα παρατηρείται το διάκενο στον άξονα των σφαιρών όμως στο δείγμα με μοριακή αναλογία 10% οι διαμορφώσεις αυτές είναι πιο εμφανείς. Στο δείγμα με αναλογία 7.5% παρατηρούνται και αρκετά συσσωματώματα.

6.2.3 AlPO₄-5 με διαφορετική μορφολογία κρυστάλλων

Προκειμένου να μεταβληθεί η μορφολογία των κρυστάλλων η παράμετρος που επιλέχθηκε να μεταβληθεί ήταν η μολαρική αναλογία του νερού ως προς το αργίλο. Πιο συγκεκριμένα, όπως φάνηκε και σε όλα τα προηγούμενα δείγματα, όταν
χρησιμοποιήθηκε αναλογία 100:1 οι κρύσταλλοι που σχηματίζονται έχουν σφαιρική δομή επί το πλείστον και αποτελούνται από πολλά επίπεδα που ενώνονται μεταξύ τους ώστε να σχηματιστεί η σφαίρα. Το σχήμα των σφαιρών διαφέρει ανάλογα με το πόσο έχει προχωρήσει η κρυστάλλωση και αντίστοιχα επηρεάζεται και το μέγεθος. Το δείγμα με αναλογία νερού 100 εμφανίζει σφαίρες που έχουν ωσείδες σχήμα ενώ τα φύλλα που απαρτίζουν τη δομή είναι μεγάλα σε μέγεθος.

Τα δείγματα που συντέθηκαν με διαφορετική μοριακή αναλογία νερού επιλέχθηκαν να έχουν 400 mol νερού προς 1 mol αργιλίου. Ήττα, αφού το μέσο διαλυτοποίησης αυξήθηκε επηρεάστηκε και ο ρυθμός κρυστάλλωσης αλλά και η μορφολογία των κρυστάλλων που παράχθηκαν. Πιο συγκεκριμένα, οι κρύσταλλοι που συντέθηκαν είχαν τη μορφή εξαγωνικών ράβδων οι οποίες είχαν αναπτυχθεί κυρίως προς τον άξονα c. Βέβαια, όπως φαίνεται από την ανάλυση SEM οι ραβδόμορφοι κρύσταλλοι δεν έχουν σχηματιστεί σε μεγάλο ποσοστό υποδεικνύοντας την ύπαρξη άμορφου υλικού. Επίσης, το μήκος των ράβδων είναι κατά πολύ μεγαλύτερο σε σχέση με τις σφαίρες που σχηματίστηκαν στο προηγούμενο πείραμα.
Κεφάλαιο 7° – Ρόφηση CO₂

7.1 Μερική Πύρωση AlPO₄-5

Για τη διαπίστωση της επίδρασης της μερικής πύρωσης (partial calcination) στους αργιλοφωσφορικούς μοριακούς ηθμούς επιλέχθηκε πρώτα να εξετασθούν δύο δείγματα, τα οποία θα έδιναν τη γενική κατεύθυνση των πειραμάτων. Πιο συγκεκριμένα, αποφασίστηκε να μετρηθούν τα δείγματα στα οποία έγινε πύρωση στους 400 °C και στους 700 °C. Μέσω της μερικής πύρωσης ο στόχος ήταν να αξιοποιηθούν οι θέσεις άνθρακα που βρίσκονται στο μόριο του οργανικού μορφοποιητή. Τα πειράματα αυτά ήθελαν να αποσαφηνίσουν αν μπορεί το θερμικά επεξεργασμένο AlPO να υποβοηθήσει στην ισχυρότερη ρόφηση του διοξειδίου του άνθρακα μέσω του πυρωμένου άνθρακα. Οι θέσεις άνθρακα θα προέρχονταν από τη δομή του οργανικού μορφοποιητή πλέγματος, που στη συγκεκριμένη εργασία ήταν η τριαιθυλαμίνη.

![Diagram 11](image-url) Οπως φαίνεται και στο Διάγραμμα 11, οι μετρήσεις που πραγματοποιήθηκαν σε θερμοκρασία 25 °C και πιέσεις από 0 έως 4 bar υποδεικνύουν πως το υλικό στο οποίο πραγματοποιήθηκε πύρωση σε υψηλή θερμοκρασία (700 °C) προσφέρει καλύτερα. Η καλύτερη συμπεριφορά του υλικού αυτού διατηρείται σε όλο το εύρος των πιέσεων που έγιναν οι μετρήσεις. Η μειωμένη απόδοση του υλικού που πυρώθηκε στους 400 °C μπορεί να αποδοθεί στην εναπομένουσα αμίνη που έχει αποκοδομηθεί, η οποία δεν αφαιρέθηκε στο σύνολο της από το εσωτερικό της δομής AFI. Έτσι, στο πορώδες
δίκτυο ο οργανικός μορφοποιητής πλέγματος λειτούργησε ως περιοριστικός παράγοντας για την περαιτέρω ρόφηση του διοξειδίου του άνθρακα. Μόλις το SDA απομακρύνθηκε, αξιοποιώντας την υψηλότερη θερμοκρασία πύρωσης το AlPO₄-5 μπόρεσε να προσφορήσει 1.53 mmol/g CO₂ στην πίεση των 4 bar. Ακόμα, μπορεί να εξαχθεί και το συμπέρασμα πως σε υψηλές πιέσεις η ρόφηση του διοξειδίου του άνθρακα είναι αντίστοιχα υψηλή αφού υπερνικούνται αντιστάσεις στη διάχυση. Πιο συγκεκριμένα, όταν η πίεση τετραπλασιάστηκε η ρόφηση ήταν περίπου 3 φορές υψηλότερη.

7.2 Πυρόλυση AlPO₄-5
Η πυρόλυση των δειγμάτων ήταν μια διαφορετική προσέγγιση για τη θερμική επεξεργασία του οργανικού μορφοποιητή πλέγματος. Εκτός από την απομάκρυνση η καύση του SDA υπό αδρανή ατμόσφαιρα είχε στόχο τη δημιουργία επιπρόσθετου πορώδους εντός των πόρων του AlPO₄-5. Η προσπάθεια αυτή έγινε κατόπιν αναφορών για τη δημιουργία νανοσωλήνων άνθρακα μονού τοιχώματος εντός των αργιλοφωσφορικών μοριακών ηθμών αλλά και σε μεμβράνες [37, 60] Στόχος των συγκεκριμένων πειραμάτων δεν ήταν η δημιουργία νανοσωλήνων αλλά η δημιουργία του επιπρόσθετου πορώδους καθώς και η διερεύνηση της επίδρασης που έχει ο πυρολυμένος άνθρακας – κάρβουνο – στη ρόφηση. Τα δείγματα που μετρήθηκαν ως

<table>
<thead>
<tr>
<th>α/α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Πίεση (bar)</th>
<th>Ρόφηση (mmol CO₂/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>400.AIPO.5.C</td>
<td>Πύρωση AIPO₄-5 στους 400 °C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,33</td>
</tr>
<tr>
<td>2</td>
<td>700.AIPO.5.C</td>
<td>Πύρωση AIPO₄-5 στους 700 °C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,53</td>
</tr>
</tbody>
</table>
προς τη ρόφηση του διοξειδίου του άνθρακα ήταν αυτά που επεξεργάστηκαν στους 240 ºC, στους 400 ºC και στους 700 ºC. Στους 240 ºC σύμφωνα με τη βιβλιογραφία πραγματοποιείται η θερμική αποκοδόμηση της αμίνης. Οι επόμενες δύο θερμοκρασίες επιλέχθηκαν ώστε να μπορεί να γίνει άμεση σύγκριση με τα δείγματα στα οποία πραγματοποιήθηκε μερική πύρωση.

Διάγραμμα 12 - Προσρόφηση CO2 σε AlPO₄-5 το οποίο έχει υποστεί πυρόλυση στους 240 ºC (●), 400 ºC (■) και 700 ºC (▲)

Από το Διάγραμμα 12 γίνεται εύκολα αντιληπτό πως η θερμική επεξεργασία του AlPO₄-5 σε υψηλή θερμοκρασία (700 ºC) δίνει τις υψηλότερες τιμές ρόφησης σε όλο το εύρος πιέσεων που έγιναν οι δοκιμές. Αυτό μπορεί να αποδοθεί στην πλήρη απομάκρυνση της τριαιθυλαμίνης. Ιδιαίτερα ενδιαφέρουν οι δύο χαμηλότερες θερμοκρασίες, στις οποίες παρατηρείται αντιστροφή της ροφητικής ικανότητας σε χαμηλές και υψηλές πιέσεις. Πιο συγκεκριμένα, το δείγμα που πυρολύθηκε στους 240 ºC εμφανίζει υψηλότερες τιμές ρόφησης σε χαμηλές πιέσεις, μέχρι τα 2 bar. Αντίθετα, στις υψηλότερες πιέσεις το δείγμα που πυρολύθηκε στους 400 ºC εμφανίζει μεγαλύτερη ροφητική ικανότητα. Η συμπεριφορά αυτή θα μπορούσε να αποδοθεί στην καλύτερη ενεργοποίηση του υλικού που πυρολύθηκε στους 400 ºC σε υψηλές πιέσεις, σε αντίθεση με το υλικό που πυρολύθηκε στους 240 ºC. Φαινόμενα διάχυσης δια μέσω της εναπομένουσας ποσότητας τριαϊθυλαμίνης ίσως είναι ο καθοριστικός παράγοντας που ευθύνεται για την αντιστροφή αυτή. Στους 240 ºC
επιβεβαιώνεται η υπόθεση για την έλξη του διοξειδίου του άνθρακα από τον πυρολυμένο άνθρακα, αφού οι τιμές ρόφησης είναι υψηλότερες από το δείγμα στο οποίο έχει απομακρυσθεί περισσότερη ποσότητα SDA. Στις καλύτερες αυτές τιμές ρόφησης μπορεί να συμβάλει και η θερμική επεξεργασία της αμίνης, οδηγώντας σε αυξημένη αλκαλικότητα με αποτέλεσμα το όξινο διοξείδιο του άνθρακα να ροφάται πιο ισχυρά.

Επίσης, η υπεροχή του δείγματος των 240 °C επιτυγχάνεται σε χαμηλές πιέσεις, γεγονός πολύ ενθαρρυντικό αφού είναι αναγκαίες οι τεχνολογίες ρόφησης σε πιέσεις κάτω από 1 bar. Στον Πίνακα 6 συνοψίζονται τα αναλυτικά αποτελέσματα των πειραμάτων που πραγματοποιήθηκαν.

Πίνακας 6 - Δεδομένα ρόφησης διοξειδίου του άνθρακα για δείγματα πυρόλυσης

<table>
<thead>
<tr>
<th>α/α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Πίεση (bar)</th>
<th>Ρόφηση (mmol CO2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>240.AIPO.5.P</td>
<td>Πυρόλυση AIPO₄-5 στους 240 °C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,32</td>
</tr>
<tr>
<td>2</td>
<td>400.AIPO.5.P</td>
<td>Πυρόλυση AIPO₄-5 στους 400 °C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,38</td>
</tr>
<tr>
<td>3</td>
<td>700.AIPO.5.P</td>
<td>Πυρόλυση AIPO₄-5 στους 700 °C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,48</td>
</tr>
</tbody>
</table>

7.3 Σύγκριση πυρωμένων και πυρολυμένων δειγμάτων
Προκειμένου να μπορεί να γίνει άμεση σύγκριση μεταξύ των δειγμάτων επιλέχθηκαν οι θερμοκρασίες 400 °C και 700 °C, όπως σημειώθηκε και προηγουμένως. Όπως φαίνεται κι από το Διάγραμμα 13, τα υλικά με τις καλύτερες ιδιότητες ρόφησης είναι αυτά που έχουν επεξεργαστεί θερμικά στους 700 °C. Η καλύτερη συμπεριφορά των
υλικών αυτών υποδεικνύει την αναγκαιότητα για επεξεργασία των υλικών σε υψηλές θερμοκρασίες ώστε να προκύψουν καλύτερες τιμές ρόφησης. Ακόμα, φαίνεται πως η συμβατική μέθοδος πύρωσης (calcination) οδηγεί σε καλύτερα αποτελέσματα σε σχέση με την τεχνική πυρόλυσης υπό αδρανή ατμόσφαιρα.

Στη χαμηλότερη θερμοκρασία, όπου πραγματοποιήθηκαν τα πειράματα 400 °C, παρατηρήθηκε μια αντιστροφή των αποτελεσμάτων στο ευρύς τον πυρόλυσης. Πιο συγκεκριμένα, το πυρωμένο δείγμα εμφανίζει υψηλότερες τιμές ρόφησης CO2 σε χαμηλές πιέσεις. Μετά τα 2 bar το δείγμα που υπέστη πυρόλυση εμφανίζει καλύτερη ροφητική ικανότητα και η μεγαλύτερη διαφορά μεταξύ των δειγμάτων παρατηρείται στα 4 bar. Η συμπεριφορά αυτή σχετίζεται με την οργανικό μορφοποιητή πλέγματος, ο οποίος έχει παραμείνει εντός των δομών. Μιας και ακολουθήθηκε το ίδιο θερμοκρασιακό πρόγραμμα (2,5 °C/min μέχρι τους 80 °C για 30 λεπτά και 2,5 °C/min μέχρι τους 600 °C για 5,5 ώρες) γίνεται η παραδοχή πως η διαφοροποίηση έγκειται στην μορφή που έχει αποκτήσει ο οργανικός μορφοποιητής. Έτσι, στις χαμηλές πιέσεις το επεξεργασμένο AlPO υπό οξειδωτικές συνθήκες έχει μεγαλύτερη επίδραση στη ρόφηση λόγω της καλύτερης απελευθέρωσης του πορώδους, ενώ στις υψηλές πιέσεις ο πυρωμένος οργανικός μορφοποιητής δημιουργεί επιπρόσθετο πορώδες το οποίο όμως είναι προσβάσιμο από τα μόρια σε υψηλές πιέσεις και για αυτό η ρόφηση του CO2 ευνοείται.

![Diagram](image.png)

Διάγραμμα 13 – Σύγκριση δειγμάτων που έχουν υποστεί πυρόλυση στους 400 °C (▲) και 700 °C (●) και δειγμάτων που έχουν πυρωθεί στους 400 °C (●) και 700 °C (★)
7.4 Μεταλλικά υποκαταστημένα AlPOs (MeAPOs) και ενσωμάτωση πυριτίου (SAPOs)

Για να εξακριβωθεί η επίδραση της υποκατάστασης μετάλλων στη δομή των αργιλοφωσφορικών μοριακών ηθμών χρησιμοποιήθηκε ως δείγμα αναφοράς το δείγμα AlPO4-5 με μοριακή αναλογία νερού 100 και θερμοκρασία πύρωσης τους 600 °C. Για τη δημιουργία των MeAPO’s ακολουθήθηκε η ίδια πειραματική διαδικασία και κάθε μέταλλο είχε μοριακή αναλογία ως προς το αργίλιο 5:100 (Me:Al = 5/100).

Στο Διάγραμμα 14 φαίνεται η ροφητική ικανότητα του κάθε υλικού ως προς το διοξείδιο του άνθρακα, ενώ στο Πίνακα 7 παρουσιάζονται αναλυτικά τα αποτελέσματα στο εύρος των πιέσεων που έγιναν οι μετρήσεις.

Η αυξημένη ροφητική ικανότητα του αργιλοφωσφορικού μοριακού ηθμού που περιέχει μόρια σιδήρου στο πλέγμα του είναι εμφανής σε όλο το εύρος των πιέσεων και παρατηρείται αύξηση της ροφητικής ικανότητας κατά 15% στα 4 bar σε σχέση με το αρχικό AlPO4-5. Η καλύτερη αυξημένη συμπεριφορά αποδίδεται στην ενσωμάτωση ενός τριθενούς μετάλλου (Fe³⁺) με την ταυτόχρονη απομάκρυνση ενός άλλου τριθενούς μορίου (Al³⁺). Επομενώς, το νέο υλικό δημιουργείται διατηρώντας την ουδέτερη κατάσταση και την ευέλικτη στοιχειωδή δομή μορίου, γεγονός που υποβοηθεί τη ρόφηση του CO2. Η ουδέτερη δομή μπορεί να υποβοηθήσει ακόμα περισσότερο το διαχωρισμό και την εκκαθαρίστωση των ουδέτερων μορίων και των πιθανών περιστάσεων μετάλλωσης.
τη ρόφηση του CO₂ όταν στο ρεύμα των απαερίων υπάρχουν και μόρια νερού – υδρατμών.[49] Ακόμα μια παράμετρος η οποία φαίνεται πως επηρεάζει τη ρόφηση είναι πως ο σίδηρος ήταν το μέταλλο που προκάλεσε τη μεγαλύτερη διόγκωση στη μοναδιαία κυψελίδα στον άξονα ε. Η αύξηση της διάστασης του μονοδιάστατου καναλιού της δομής AlPO₄-5 υπερνικά φαινόμενα διάχυσης που μειώνουν τη ροφητική ικανότητα των υλικών.

Από τα υπόλοιπα υλικά ενδιαφέρον παρουσιάζει η συμπεριφορά του MgAPO-5, το οποίο σε χαμηλές πιέσεις εμφανίζει χαμηλή ροφητική ικανότητα ενώ σε υψηλές πιέσεις η απόδοση του βελτιώνεται σημαντικά. Είναι αξιοσημείωτο πως στις χαμηλές πιέσεις η ρόφηση του CO₂ είναι μικρότερη ακόμα και από την μη υποκατεστημένη δομή AlPO₄-5. Στα 4 bar, όπου σημειώνονται και οι υψηλότερες τιμές ρόφησης για όλα τα δείγματα, το MgAPO-5 έχει παραπλήσια ροφητική ικανότητα με αυτή του FeAPO-5 και εμφανίζει βελτιωμένη ροφητική ικανότητα κατά 12% σε σχέση με το αρχικό AIPo.

Αυτή η συμπεριφορά μπορεί να ερμηνευτεί από την καλύτερη ενεργοποίηση του υλικού σε υψηλές πιέσεις, γεγονός που οφείλεται ξανά σε φαινόμενα διάχυσης. Οι αυξημένες τιμές ρόφησης μπορούν να αποδοθούν στον ισχυρά ιοντικό χαρακτήρα του δεσμού Mg-O που σχηματίζεται στο δίκτυο καθώς επίσης έχει επισημανθεί πως το μήκος του δεσμού επηρεάζει τη ρόφηση (Mg-O 1.969 Å). [62, 63]

Όσον αφορά τα δύο τελευταία μεταλλικά υποκατεστημένα υλικά, το SAPO-5 και το CoAPO-5 τα αποτελέσματα τους είναι παραπλήσια και σε αρκετά χαμηλά επίπεδα συγκριτικά με τα δύο προηγούμενα υλικά. Πρέπει βέβαια, να επισημανθεί και τα δύο υποκατεστημένα ισχυρά υποκαταστημένα καλύτερη ροφητική συμπεριφορά (κατά 4% και 6% αντίστοιχα στα 4 bar) σε σχέση με το αρχικό δείγμα AlPO₄-5. Έτσι, γίνεται φανερό πως ακόμα και υλικά με οξές θέσεις που προκύπτουν ύστερα από την υποκατάσταση δίνουν καλύτερα αποτελέσματα.

Συνεπώς, καταλήγουμε στο συμπέρασμα πως η ύπαρξη οξέων θέσεων υποβοηθά στη ρόφηση και το διοξείδιο του άνθρακα λειτουργεί ως βάση κατά Lewis, οδηγώντας σε χημειορόφηση (chemisorption) στις θέσεις αυτές. Πιο συγκεκριμένα, η χημειορόφηση ευνοείται στις χαμηλές πιέσεις, όπου και εμφανίζονται αντιστάσεις λόγω της δυσκολότερης διάχυσης των προς προσρόφηση μορίων στο εσωτερικό των πόρων. Για το δείγμα με το σίδηρο η διάχυση των διαστάσεων διαδραματίζει σημαντικότερο ρόλο και η διάχυση των μορίων του CO₂ πραγματοποιείται με μεγαλύτερη ευκολία.
Άρα, η ουδέτερη δομή του σε συνδυασμό με τις αυξημένες διαστάσεις οδηγεί στην αυξημένη φυσιορόφηση (physisorption) αφού δεν υπάρχουν οξείς θέσεις.

Πίνακας 7 – Δεδομένα ρόφησης CO₂ από AlPO₄-5 και MeAPO’s με 5% συγκέντρωση μετάλλου

<table>
<thead>
<tr>
<th>α/α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Πίεση (bar)</th>
<th>Ρόφηση (mmol CO₂/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AlPO₄-5</td>
<td>Δομή αναφοράς με συγκέντρωση νερού 100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,57</td>
</tr>
<tr>
<td>2</td>
<td>SAPO-5</td>
<td>Ενσωμάτωση Si, σε αναλογία 5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,64</td>
</tr>
<tr>
<td>3</td>
<td>FeAPO-5</td>
<td>Ενσωμάτωση Fe, σε αναλογία 5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,8</td>
</tr>
<tr>
<td>4</td>
<td>MgAPO-5</td>
<td>Ενσωμάτωση Mg, σε αναλογία 5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0,97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,76</td>
</tr>
<tr>
<td>5</td>
<td>CoAPO-5</td>
<td>Ενσωμάτωση Co, σε αναλογία 5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1,67</td>
</tr>
</tbody>
</table>
7.5 Επίδραση συγκέντρωσης μετάλλου

Η αυξημένη ροφητική ικανότητα που παρουσίασε ο αργιλοφωσφορικός μοριακός ηθμός με την ενσωμάτωση σιδήρου οδήγησε στην περαιτέρω διερεύνηση της συγκεκριμένης δομής. Η μοριακή αναλογία του σιδήρου που χρησιμοποιήθηκε στα αρχικά συγκριτικά πειράματα ήταν 5% και τα νέα δείγματα που συντέθηκαν είχαν συγκέντρωση 2.5%, 7.5% και 10% ώστε να διαπιστωθεί η επίδραση στη προσρόφηση. Η ίδια πειραματική διαδικασία ακολουθήθηκε σε όλα τα πειράματα σύνθεσης.

![Diagram 15 – Prosoφfηση CO₂ se FeAPO-5 me diaforetikēs sygkentrwseis metallon, 2.5% (△), 5% (●), 7.5% (○) kai 10% (■)]](image)

Από το Διάγραμμα 15 φαίνεται πως το δείγμα με μοριακή αναλογία 5% παρουσιάζει τη βέλτιστη ροφητική ικανότητα. Το δείγμα με μικρότερη συγκέντρωση σιδήρου εμφανίζει μικρότερες τιμές ρόφησης και ώστε να συμπεράνεται ότι η συγκέντρωση του μετάλλου επηρεάζει καθοριστικά τα αποτελέσματα της ρόφησης. Στη συνέχεια, τα υλικά που συντέθηκαν περιέχαν ακόμα περισσότερη συγκέντρωση σιδήρου με σκοπό να βελτιωθεί ακόμα περισσότερο τη ροφητική ικανότητα. Όμως τα αποτελέσματα δεν μπόρεσαν να εξηγηθούν με συνέπεια την επίδραση της αύξησης της συγκέντρωσης του μετάλλου. Αυτό γιατί τα υλικά με αυξημένη συγκέντρωση σιδήρου παρουσίαζαν μειωμένη ροφητική ικανότητα. Βέβαια, το δείγμα με συγκέντρωση 7.5% προσροφά λιγότερο σε σχέση με αυτό που έχει συγκέντρωση 10%.
<table>
<thead>
<tr>
<th>α/α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Πίεση (bar)</th>
<th>Ρόφηση (mmol CO2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5FeAPO.5</td>
<td>Ενσωμάτωση Fe, σε συγκέντρωση 2.5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.21</td>
</tr>
<tr>
<td>2</td>
<td>5FeAPO.5</td>
<td>Ενσωμάτωση Fe, σε συγκέντρωση 5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>7.5FeAPO.5</td>
<td>Ενσωμάτωση Fe, σε συγκέντρωση 7.5 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>10FeAPO.5</td>
<td>Ενσωμάτωση Fe, σε συγκέντρωση 10 %</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.58</td>
</tr>
</tbody>
</table>
7.6 ΑΙΡΟΞ-5 με διαφορετική μορφολογία κρυστάλλων
Τα δείγματα που συντέθηκαν διέφεραν μόνο ως προς την αναλογία νερού που χρησιμοποιήθηκε, με αποτέλεσμα τη διαφορετική μορφολογία των κρυστάλλων που παράχθηκαν. Πιο συγκεκριμένα, το πρώτο δείγμα είχε μολαρική αναλογία νερού ίση με 100 και διαμορφώσεις σφαιρών ενώ το δεύτερο είχε 400 και διαμορφώσεις ράβδων. Μέσω της ανάλυσης XRD προκύπτει πως και τα δύο δείγματα είναι κρυσταλλικά αφού εμφανίζουν οξείες κορυφές και αντιστοιχούν στην AFI δομή.

![Διάγραμμα 16 – Προσρόφηση CO₂ σε υλικά ΑΙΡΟΞ-5 με μολαρική αναλογία νερού 100 (●) και 400 (■)](image_url)

Όπως φαίνεται στο Διάγραμμα 16, η πυκνή δομή που συντέθηκε με τη μικρότερη αναλογία νερού εμφανίζει διακριτά καλύτερα αποτελέσματα ρόφησης. Ακόμα και στη μέγιστη πίεση (4 bar) όπου λαμβάνονται οι υψηλότερες τιμές ρόφησης για τα υλικά, το πυκνό υλικό εμφανίζει σχεδόν διπλάσια ροφητική ικανότητα. Μια πρώτη ποιοτική εξήγηση μπορεί να δοθεί μέσω του γραφήματος XRD λαμβάνοντας υπόψη την ένταση των κορυφών. Εφόσον πρόκειται για τα ίδια υλικά, με μόνη διαφορά τη συγκέντρωση του νερού, και στην ανάλυση χρησιμοποιήθηκαν ίδιες ποσότητες μπορεί να γίνει μια έμμεση σύγκριση της κρυσταλλικότητας. Έτσι, το δείγμα 400.ΑΙΡΟΞ.5.W συγκριτικά με το δείγμα 100.ΑΙΡΟΞ.5.W εμφανίζει μειωμένη κρυσταλλικότητα, γεγονός που δικαιολογεί την μειωμένη ροφητική ικανότητα. Ακόμα, γίνεται φανερό και από την ανάλυση SEM πως στο δείγμα 100.ΑΙΡΟΞ.5.W έχει επιπερισχεί πολύ καλύτερη κρυστάλλωση σε σχέση με το δείγμα 400.ΑΙΡΟΞ.5.W, όπου εμφανίζονται κάποιοι σχηματισμοί που παρατηρούνται σε άμορφο υλικό.

Πίνακας 9 – Δεδομένα ρόφησης CO2 από AlPO4-5 με διαφορετικές συγκεντρώσεις νερού

<table>
<thead>
<tr>
<th>α/α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Πίεση (bar)</th>
<th>Ρόφηση (mmol CO2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.A1PO.5.W</td>
<td>AlPO4-5 με μοριακή αναλογία νερού 100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.57</td>
</tr>
<tr>
<td>2</td>
<td>400.A1PO.5.W</td>
<td>AlPO4-5 με μοριακή αναλογία νερού 400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Κεφάλαιο 8° – Κινητική Προσρόφηση
Για τον προσδιορισμό της κινητικής της προσρόφησης του διοξειδίου του άνθρακα στους αργιλοφωσφορικούς μοριακούς ηθμούς με δομή AFI, χρησιμοποιήθηκε ο σταθμικός αναλυτής ρόφησης IsoSORP. Η πραγματοποίηση των μετρήσεων του βάρους έγινε χωρίς την επίτευξη ισορροπίας ανά 1 bar, αλλά το πρόγραμμα ορίστηκε να πάει από τα 0 στα 4 bar μετρώντας το βάρος σε σχέση με το χρόνο. Η επεξεργασία των δεδομένων βασίστηκε στη μεγαλύτερη τιμή βάρους, στην οποία αντιστοιχήθηκε και η υψηλότερη τιμή ρόφησης. Στη συνέχεια πραγματοποιήθηκε διόρθωση του χρόνου των μετρήσεων αλλά και του βάρους, με σκοπό να υπολογιστεί ο καθαρός χρόνος των μετρήσεων καθώς και του βάρους του CO2 που ροφήθηκε. Γνωρίζοντας τη μέγιστη τιμή ρόφησης (mg CO2/ g ροφητή) σε συνδυασμό με το μέγιστο βάρος που έχει ροφηθεί (g CO2) πραγματοποιήθηκαν οι υπολογισμοί στην αντίστροφη πορεία ώστε να εξαχθούν τα απαιτούμενα δεδομένα.

Αρχικά, πραγματοποιήθηκε σύγκριση μεταξύ των δειγμάτων που συντέθηκαν με διαφορετική μοριακή συγκέντρωση νερού, 100 και 400, στους 25 °C. Οι μέγιστες τιμές ρόφησης για τα δύο αυτά δείγματα φαίνονται στον Πίνακα 10 και εκφράζονται σε mg/ g.

Πίνακας 10- Μέγιστες τιμές ρόφησης CO2 σε AlPO4-5 με διαφορετικές συγκεντρώσεις νερού στους 25 °C

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Ρόφηση (mg CO2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.AIPO.5.W</td>
<td>AIPO4-5 με μοριακή αναλογία νερού 100</td>
<td>66.86</td>
</tr>
<tr>
<td>2</td>
<td>400.AIPO.5.W</td>
<td>AIPO4-5 με μοριακή αναλογία νερού 400</td>
<td>37.82</td>
</tr>
</tbody>
</table>

Αφού πραγματοποιήθηκαν οι απαραίτητοι μαθηματικοί υπολογισμοί σχηματίστηκε το διάγραμμα στο οποίο συγκρίνεται πόσα mg CO2 ανά g AlPO4-5 ροφάνται στο πέρας του χρόνου. Στο Διάγραμμα 17 γίνεται εύκολα αντιληπτό πως το πυκνό δείγμα, με νερό 100, εμφανίζει υψηλότερους ρυθμούς ρόφησης σε σχέση με το αραιό, με νερό 400. Πιο συγκεκριμένα η μέγιστη τιμή ρόφησης επιτυγχάνεται σε 38 περίπου λεπτά για το συμπυκνωμένο AlPO ενώ για το αραιό απαιτούνται περίπου 62 λεπτά.
Διάγραμμα 17 – Σύγκριση ρόφησης ανά μονάδα χρόνου (min) για AlPO₄-5 με μοριακή αναλογία νερού 100 (●) και συγκέντρωση νερού 400 (▲).

Ο υψηλότερος ρυθμός ρόφησης που εμφανίζει το δείγμα 100.AIPO₅.W σε συνδυασμό με την υψηλότερη ροφητική ικανότητα που διαθέτει το συγκεκριμένο δείγμα, όπως διαπιστώθηκε και στην παράγραφο 7.5, οδήγησε στην επιλογή του για περαιτέρω κινητική ανάλυση σε δύο ακόμα θερμοκρασίες. Λόγω περιορισμών του εξοπλισμού που χρησιμοποιείται για τις μετρήσεις της ρόφησης οι θερμοκρασίες αυτές ήταν υψηλότερες των 25 °C, στους 45 °C και 60 °C.

Πίνακας 11 – Μέγιστες τιμές ρόφησης CO₂ του AlPO₄-5 σε διαφορετικές θερμοκρασίες

<table>
<thead>
<tr>
<th>α/α</th>
<th>Δείγμα</th>
<th>Περιγραφή</th>
<th>Ρόφηση (mg CO₂/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.AIPO₅.W 25 °C</td>
<td>Μέτρηση στους 25 °C</td>
<td>66.86</td>
</tr>
<tr>
<td>2</td>
<td>100.AIPO₅.W 45 °C</td>
<td>Μέτρηση στους 45 °C</td>
<td>50.11</td>
</tr>
<tr>
<td>3</td>
<td>100.AIPO₅.W 60 °C</td>
<td>Μέτρηση στους 60 °C</td>
<td>32.5</td>
</tr>
</tbody>
</table>

Ακολουθώντας την ίδια πειραματική διαδικασία, αφού μετρήθηκε η μέγιστη τιμή ρόφησης σε κάθε θερμοκρασία καθώς και η μέσα που ροφήθηκε πραγματοποιήθηκαν
αντίστροφοι υπολογισμοί για την εύρεση της ρόφησης κάθε χρονική στιγμή. Ετσι, δημιουργήθηκε το Διάγραμμα 18.

Εφόσον η προσρόφηση αποτελεί εξώθερμη διεργασία είναι αναμενόμενο η κινητική της προσρόφησης να μειώνεται με την αύξηση της θερμοκρασίας. Αντίστοιχα, μειώνεται και η μέγιστη ποσότητα διοξειδίου του άνθρακα που προσροφάται στο υλικό. Οταν εφαρμοστεί λογαριθμική γραμμή τάσης στις μετρήσεις και των τριών θερμοκρασιών επιβεβαιώνεται πως η ρόφηση ακολουθεί την ισόθερμη Τύπου Ι.

Προκειμένου να γίνει αξιολόγηση της απόδοσης του ροφητή κρίνεται σκόπιμη η μελέτη της κινητικής της προσρόφησης, αξιοποιώντας κάποιο μοντέλο. Το πιο ευρέως χρησιμοποιούμενο και απλό κινητικό μοντέλο είναι αυτό της ψευδο-πρώτης τάξης ή αλλιώς μοντέλο Lagergen. Ήταν το πρώτο μοντέλο που χρησιμοποιήθηκε για να περιγράψει το ρυθμό προσρόφησης μεταξύ ρευστού και στερεού και περιγράφεται από την ακόλουθη εξίσωση:

\[
\frac{dq_t}{dt} = k(q_e - q_t)
\]
Όπου, \(q_e \) η ποσότητα του \(\text{CO}_2 \) που έχει ροφηθεί στην ισορροπία, \(q_t \) η ποσότητα του \(\text{CO}_2 \) που έχει ροφηθεί σε οποιαδήποτε χρονική στιγμή και \(k \) η κινητική σταθερά της προσρόφησης.

Η επίλυση της διαφορικής εξίσωσης μπορεί να πραγματοποιηθεί με τις ακόλουθες οριακές συνθήκες:

- Την \(t=0 \) η ρόφηση είναι μηδέν \((q_t = 0) \)
- Η μέγιστη ρόφηση \(q_e \) επιτυγχάνεται σε άπειρο χρόνο \(t=\infty \)

Έτσι, η αλγεβρική σχέση που προκύπτει για το μοντέλο Lagergen είναι:

\[
q_t = q_e(1 - e^{-kt}) \leftrightarrow \log(q_e - q_t) = \log(q_e) - \frac{k}{2.303} t
\]

Για τον υπολογισμό του \(k \) σε κάθε μια από τις τρεις θερμοκρασίες θα σχηματιστούν τα διαγράμματα, όπου στον άξονα \(y \) θα βρίσκεται το \(\log(q_e - q_t) \) ενώ στο άξονα \(x \) το \(k/2.303 \). Αφού πραγματοποιήθηκαν οι απαραίτητοι υπολογισμοί δημιουργήθηκαν τα τρία διαγράμματα, στα οποία εφαρμόστηκε γραμμική γραμμή τάσης. Έτσι, η κλίση του γραφήματος αντιστοιχεί στην κινητική σταθερά \(k \). [64, 65]

Διάγραμμα 19 – Γραμμικό μοντέλο Lagergen για τον υπολογισμό της κινητικής σταθεράς \(K \) στους 25 °C

\[y = -0.1063x + 1.8429 \]
\[R^2 = 0.9364 \]
Διάγραμμα 20 - Γραμμικό μοντέλο Lanergen για τον υπολογισμό της κινητικής σταθεράς K στους 45°C

Διάγραμμα 21 - Γραμμικό μοντέλο Lanergen για τον υπολογισμό της κινητικής σταθεράς K στους 60°C

Από τα παραπάνω διαγράμματα επιβεβαιώνεται η πρόβλεψη, με βάση τη θεωρία, για μείωση της κινητικής με αύξηση της θερμοκρασίας και στον Πίνακα 12 παρουσιάζονται οι σταθερές της κινητικής για τους 25, 45 και 60°C. Επίσης, η αποτέλουσα αντιστοιχεί στο log qe, δηλαδή τη ποσότητα CO2 που έχει απορροφηθεί στην ισορροπία. Επιβεβαιώνεται λοιπόν και η δεύτερη υπόθεση πως όσο χαμηλότερη η θερμοκρασία τόσο υψηλότερη η ρόφηση, λόγω του εξώθερμου χαρακτήρα της προσρόφησης.

Πίνακας 12 - Σταθερές Κινητικής k

<table>
<thead>
<tr>
<th>Θερμοκρασία (°C)</th>
<th>Σταθερά Κινητικής k (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.1063</td>
</tr>
<tr>
<td>45</td>
<td>0.0996</td>
</tr>
<tr>
<td>60</td>
<td>0.0926</td>
</tr>
</tbody>
</table>
Η σταθερά κινητικής \(k \) εξαρτάται από τη θερμοκρασία και η σχέση αυτή περιγράφεται από την εξίσωση Arrhenius:

\[
k = A e^{-\frac{E_a}{RT}}
\]

Όπου \(k \) η σταθερά κινητικής, \(A \) ο προεκθετικός παράγοντας που σχετίζεται με τις συνθήκες της αντίδρασης και το σχήμα και το μέγεθος των αντιδρόντων, \(E_a \) η απαιτούμενη ενέργεια ενεργοποίησης, \(R \) η παγκόσμια σταθερά των ιδανικών αερίων και \(T \) η θερμοκρασία.

Μετατρέποντας την εξίσωση Arrhenius στη γραμμική της μορφή δημιουργείται το γράφημα το οποίο στον άξονα \(y \) έχει το \(\ln k \) ενώ στον άξονα \(x \) έχει το \(1/T \).

\[
\ln k = \ln A - \frac{E_a}{R} \frac{1}{T}
\]

Όπως φαίνεται και στο Διάγραμμα 2, η γραμμική γραμμή τάσης δίνει τις απαραίτητες πληροφορίες τόσο για την κλίση όσο και για την αποτέμνουσα. Η αποτέμνουσα ισούται με το \(\ln A \), ενώ η κλίση είναι ίση με \(-E_a/R \). Προκύπτει λοιπόν:

\[
\ln A = -3.5281 \leftrightarrow A = 0.02936 \text{ min}^{-1}
\]

\[
-\frac{E_a}{R} = 384.79 \leftrightarrow E_a = -3.199 \text{ kJ/mol}
\]

Η αρνητική ενέργεια ενεργοποίησης υποδηλώνει πως η ρόφηση ακολουθεί ένα πολυβηματικό μηχανισμό και επιβεβαιώνει λόγω της αρνητικής τιμής την μείωση του ρυθμού με αύξηση της θερμοκρασίας.

\[\text{Διάγραμμα 22 – Γραμμική εξίσωση Arrhenius για τις σταθερές κινητικής που υπολογίστηκαν στις τρεις θερμοκρασίες}\]
Συμπεράσματα και μελλοντική έρευνα

Για όλα τα πειράματα που πραγματοποιήθηκαν είναι εύκολο να διαπιστωθεί η επιτυχής σύνθεση των δομών AlPO₄-5 καθώς και η κρυσταλλικότητα των δειγμάτων. Στη συνέχεια, μέσω της ανάλυσης SEM γίνεται ξεκάθαρη η μορφολογία των κρυστάλλων που έχουν παραχθεί καθώς και πως επηρεάζεται ο κρύσταλλος επηρεάζοντας τη συγκέντρωση του νερού στο πρόδρομο μίγμα. Ακόμα, οι υπολογισμοί της μοναδιαίας κυψελίδας για τα μεταλλικά υποκατεστημένα AlPOs επιβεβαιώνει την επιτυχή ενσωμάτωση των μετάλλων στο δίκτυο των αργιλοφωσφορικών μοριακών ημιμοιων.

Για τα πειράματα μερικής πύρωσης δεν παρατηρήθηκε επίδραση του πυρωμένου άνθρακα, που προέρχεται από την τριαθυλαμίνη, στη ρόφηση του διοξειδίου του άνθρακα. Αντίθετα, τα ανθρακωτά AlPOs επιβεβαίωσαν την υπόθεση για μεγαλύτερη έλξη του CO₂ από τον πυρωμένο άνθρακα, ιδίως στη θερμοκρασία των 240 °C. Για μεταλλικά υποκατεστημένα AlPOs, το FeAPO-5 η μόνη ουδέτερη δομή, επαλήθευσε την προσρόφηση του ιουλίου ροφήσεως για το FeAPO-5 ήταν 1.8 mmol/g και αντιστοιχεί σε 15% αυξημένη ροφητική ικανότητα σε σχέση με το αρχικό AlPO-5. Στη συνέχεια, τα πειράματα διερεύνησης της επίδρασης που έχει η συγκέντρωση του σιδήρου στη ρόφηση δεν παρέχουν ξεκάθαρα αποτελέσματα, επειδή υπάρχει ασυνέχεια στη ροφητική συμπεριφορά όσο αυξάνετε τη συγκέντρωση. Επίσης, δεν υπάρχει σχετική υπολογισμοί από την οποία μπορούμε να εξάγουμε συμπεράσματα. Τα υλικά με διαφορετική μορφολογία εμφάνισαν και πολλά διαφορετικές ικανότητες ρόφησεως, με το πιο πυκνό και σφαιρικό υλικό να υπερισχύει κατά 43% από το αραιό. Πέρα από τη μορφολογία καθοριστικό ρόλο στα αποτελέσματα αυτά διαδραμάτισε και ο βαθμός κρυσταλλικότητας των δύο δειγμάτων. Η ποιοτική μελέτη της κινητικής έδωσε ενδείξεις για το ποιο υλικό μπορεί να ροφήσει πιο γρήγορα το διοξείδιο του άνθρακα καθώς και πως επηρεάζεται ο χρόνος που απαιτείται για να φτάσει την ισορροπία σε διαφορετικές θερμοκρασίες. Από τα αποτελέσματα αυτά υπολογίστηκε η σταθερά της κινητικής k, η οποία μειώνεται με αύξηση της θερμοκρασίας καθώς και η ενέργεια ενεργοποίησης.
Στο πλαίσιο αυτής της διπλωματικής εργασίας προέκυψαν κάποιες ιδέες για μελλοντικά πειράματα τα οποία πρόκειται να πραγματοποιηθούν. Αρχικά, θα πραγματοποιηθεί στοιχειακή ανάλυση των πυρολυμένων δειγμάτων καθώς και των δειγμάτων FeAPO-5 με διαφορετικές συγκεντρώσεις μετάλλου, ώστε να μπορέσουν να εξηγηθούν καλύτερα τα φαινόμενα που παρουσιάστηκαν. Επίσης, θα πραγματοποιηθεί επανάληψη των πειραμάτων σύνθεσης των FeAPOs ώστε να επιβεβαιωθεί πως δεν έχει γίνει κάποιο σφάλμα στην πειραματική διαδικασία ή στις μετρήσεις. Στη συνέχεια, θα πραγματοποιηθεί τροποποίηση των δειγμάτων AlPO-5 με τη χρήση αμίνης και πιο συγκεκριμένα θα αξιοποιηθεί η 3-τριαθοξυσιλπροπυλαμίνη (3-Triethoxysilylpropylamine – APTES). Τέλος, αφού τα πειράματα της πυρόλυσης έδωσαν ικανοποιητικά αποτελέσματα θα διερευνηθούν περισσότερο και θα πραγματοποιηθεί χημική ενεργοποίηση με κάποιο διαλύμα (chemical activating agent), όπως διάλυμα φωσφορικού οξέος και καυστικού καλίου.

Πέρα από τη δομή AFI, ιδιαίτερο ενδιαφέρον παρουσιάζει και η δομή CHA η οποία θα μελετηθεί λόγω των μικρότερων πόρων που έχει αλλά και λόγω των αναφορών στη βιβλιογραφία για αυξημένες τιμές προσρόφησης διοξειδίου του άνθρακα. Πιο συγκεκριμένα, θα συντεθεί το υλικό SAPO-34, το οποίο δεν απαιτεί την ύπαρξη υδροφθορίου.
2. Τομέας Επιστήμης και Τεχνικής των Υλικών, Ε.Μ.Π., Εργαστηριακοί Οδηγοί Επιστήμης & Τεχνικής Υλικών, Το Εξερήμα. 2014.
8. Δεληγιαννάκης, Κ., Τομέας Επιστήμης και Τεχνικής των Υλικών, Περίθλαση Ακτίνων Χ Νετρονίων. Πανεπιστήμιο Ιωαννίνων, Ανωτάτη ακαδημαϊκή μαθήματα.