ΠΕΡΙΕΧΟΜΕΝΑ

1 Εισαγωγή .. 4
 1.1 Αντικείμενο έρευνας – Στόχοι υποέργου .. 4
 1.2 Μεθοδολογία υλοποίησης υποέργου ... 6
 1.3 Ερευνητές και συμβολή στο υποέργο .. 12

2 Πείραμα .. 13
 2.1 Ανάπτυξη υμενίων SnO_2 ... 13
 2.1.1 Πειραματική διάταξη .. 13
 2.1.2 Χαρακτηρισμός υμενίων SnO_2 .. 16
 2.1.3 Διερεύνηση του Sn(CH_3)_4 ως εναλλακτικού πρόδρομου υλικού 22
 2.1.4 Έλεγχος των υμενίων SnO_2 ως στοιχείων αίσθησης υδρογόνου 22
 2.2 Ανάπτυξη υμενίων ZnO ... 27
 2.2.1 Επανασχεδιασμός εργαστηριακού αντιδραστήρα ΧΑΑ .. 27
 2.2.2 Επιλογή πρόδρομου υλικού .. 28
 2.3 Ανάπτυξη υμενίων Al ... 30
 2.3.1 Πειραματική διάταξη .. 30
 2.3.2 Μέτρηση ρυθμού ανάπτυξης υμενίων Al ... 32

3 Προσομοίωση .. 33
 3.1 Βασικές αρχές της χημικής απόθεσης από ατμό ... 33
 3.2 Ανάπτυξη προσομοιωτή διεργασιών ΧΑΑ ... 34
 3.2.1 Εξισώσεις διατήρησης ... 34
 3.2.2 Συνοριακές συνθήκες .. 36
 3.2.3 Θερμοφυσικές ιδιότητες των συστατικών και του μίγματος .. 38
 3.2.4 Ιδιότητες μεταφοράς των συστατικών και του μίγματος .. 38
 3.2.5 Συνολικός ρυθμός ανάπτυξης ... 40
 3.2.6 Αριθμητική επίλυση ... 41
 3.2.7 Ενδεικτικά αποτελέσματα προσομοιωτή ... 42
3.3 Ανάπτυξη υμενίων SnO2 ... 43
3.3.1 Ανάλυση πειραματικών δεδομένων .. 43
3.3.2 Υπολογισμός σύστασης εισόδου αντιδρώντος μίγματος 44
3.4 Κινητική απόθεσης SnO2 .. 45
3.4.1 Βιβλιογραφική ανασκόπηση ... 45
3.4.2 Κινητικοί μηχανισμοί "μιας κατεύθυνσης" 46
3.4.3 Εξαγωγή ρυθμού ανάπτυξης ... 49
3.4.4 Εκτίμηση κινητικών παραμέτρων 53
3.4.5 Σύγκριση υπολογισμών και πειραμάτων 56
3.5 Ανάπτυξη υμενίων Al .. 60
3.5.1 Χημεία απόθεσης Al από DMEAA .. 60
3.5.2 Ενδεικτικά αποτελέσματα προσομοιωτά 60
3.5.3 Σύγκριση υπολογισμών και πειραμάτων 61

4 Πρότυπη Συστημική Ανάλυση .. 63
4.1 Αποδοτική ανάλυση ευστάθειας/διακλάδωσης .. 63
4.1.1 Επέκταση δυνατοτήτων υφιστάμενων υπολογιστικών κωδίκων 63
4.1.2 Ο κώδικας ‘κέλυφος’: H μέθοδος αναδρομικής προβολής (RPM) 67
4.1.3 Εφαρμογή της μεθόδου RPM ... 69
4.1.4 Το φυσικό πρόβλημα .. 71
4.1.5 Ανάλυση ευστάθειας με την RPM 76
4.2 Υπολογισμός ασταθών λύσεων μόνιμης κατάστασης 79
4.2.1 Το μαθηματικό μοντέλο ... 80
4.2.2 Αδιαστατοποίηση του μαθηματικού μοντέλου 83
4.2.3 Μέθοδος επίλυσης των διακριτοποιημένων εξισώσεων 85
4.2.4 Κατανομές μετατροπής και αδιαστατοποιημένης θερμοκρασίας κατά μήκος του αντιδραστήρα 88
4.2.5 Βηματισμός στην παράμετρο ... 90
4.2.6 Επίδραση του τρόπου γραμμικοποίησης των όρων πηγής των εξισώσεων του φυσικού προβλήματος στο βηματισμό στην παράμετρο .. 92
4.2.7 Αποτύπωση του κλάδου λύσεων με εφαρμογή της μεθόδου – «κέλυφος» ... 96
4.2.8 Επιτάχυνση σύγκλισης με χρήση της RPM 102
5 Ανάλυση Βελτιστής Λειτουργίας 106
5.1 Εισαγωγή.. 106
5.2 Βασικά στοιχεία του Γενικευμένου Εξελικτικού Αλγορίθμου................................. 108
5.3 Διαδικασία βελτιστοστοποίησης με χρήση του λογισμικού EASY...................... 110
5.4 Καθορισμός του προβλήματος βελτιστοστοποίησης αντιδραστήρα ΧΑΑ................. 111
5.5 Αποτελέσματα παραμετρικής ανάλυσης αντιδραστήρα ΧΑΑ 113
 5.5.1 Αποτελέσματα επίλυσης στις συνθήκες αναφοράς 113
 5.5.2 Επίδραση παροχής οξυγόνου .. 114
 5.5.3 Επίδραση θερμοκρασίας πηγής ατμών.. 114
 5.5.4 Επίδραση θερμοκρασίας απόθεσης .. 115
 5.5.5 Επίδραση παροχής φέροντος αερίου... 116
 5.5.6 Επίδραση πίεσης λειτουργίας.. 116
5.6 Αποτελέσματα βελτιστοποίησης αντιδραστήρα ΧΑΑ 117

6 Προοπτικές για Μελλοντική Έρευνα .. 120

Βιβλιογραφικές Αναφορές.. 124

Κατάλογος Συμβόλων ... 126

Παράρτημα: Δημοσιεύσεις... 129
Εισαγωγή

1.1 Αντικείμενο έρευνας – Στόχοι υποέργου

Αντικείμενο της έρευνας είναι η ανάλυση διεργασιών Χημικής Απόθεσης από Ατμό (ΧΑΑ) που χρησιμοποιούνται ευρέως στη βιομηχανία μικροηλεκτρονικής για την παρασκευή λεπτών επιστρώσεων (υμενίων) με πάχος που δεν ξεπερνά τα 10μ [Elliot, 1986]. Το βασικό πλεονέκτημα των τεχνολογιών ΧΑΑ είναι ότι επιτρέπουν την παραγωγή υμενίων με πάχος υψηλής ομοιομορφίας και πλήρως καθορισμένες και αναπαραγωγίσιμες ηλεκτρικές, οπτικές χημικές και μηχανικές ιδιότητες. Η χημική απόθεση από ατμό περιλαμβάνει αντιδράσεις αέριας και στερεής φάσης σε διεργασίες μεταφοράς μάζας, ορμής και ενέργειας σε αέρια μίγματα πολλών συστατικών (Σχήμα 1.1). Η ποιότητα των υμενίων καθορίζεται από τις αλληλεπιδράσεις των μηχανισμών μεταφοράς και των χημικών αντιδράσεων, οι οποίες με τη σειρά τους εξαρτώνται από τις συνθήκες λειτουργίας συμπεριλαμβανομένης της γεωμετρίας των αντιδραστήρων ΧΑΑ [Kleijn et al., 1991].

Σχήμα 1.1 Διεργασία χημικής απόθεσης από ατμό (ΧΑΑ)
Η σύγχρονη βιομηχανία μικροηλεκτρονικής θέτει αυστηρές απαιτήσεις σχετικά με την ποιότητα των υμενίων, όπως υψηλό ρυθμό απόθεσης, ομοιόμορφη κατανομή πάχους υμενίου κατά μήκος του υποστρώματος (Σχήμα 1.2) και σχετικά οικονομική χρήση των αντιδραστηρίων. Ωστόσο, η πολυπλοκότητα της διεργασίας ΧΑΑ ευθύνεται για τις δυσκойλίες που συναντώνται στην προσαρμογή βιομηχανικών αντιδραστήρων σε άλλες συνθήκες λειτουργίας και σε διαφορετικές γεωμετρίες υποστρώματος αλλά και στην επιτυχή μεταφορά εργαστηριακών μεθόδων στη βιομηχανική κλίμακα. Ο σχεδιασμός ενός αντιδραστήρα ΧΑΑ απαιτεί σημαντικό χρόνο σε πειράματα τα οποία είναι δαπανηρά και πιθανότατα περιορισμένης ευστοχίας. Από την άλλη πλευρά, η προσομοίωση αποτελεί μια εξαιρετικά εναλλακτική μέθοδο, που επιτρέπει τη μείωση των απαιτούμενων πειραμάτων και τη δυνατότητα σχολαστικής διερεύνησης της διεργασίας σε διάφορες συνθήκες λειτουργίας.

Σχήμα 1.2 Ενδεικτικές κατανομές ανομοιομορφίας του πάχους του υμενίου

Τα περισσότερα μοντέλα προσομοίωσης διεργασιών ΧΑΑ εστιάζουν στο ρευστομηχανικό πρόβλημα, ενώ χρησιμοποιούν απλοποιημένες σχέσεις για να περιγράψουν την κινητική των χημικών αντιδράσεων. Όμως, η ακριβής περιγραφή της ανάπτυξης των υμενίων απαιτεί τη γνώση της κινητικής των αντιδράσων που λαμβάνουν χώρα τόσο στην αέρια όσο και στη στερεή φάση (πάνω στο υπόστρωμα απόθεσης). Η τρέχουσα τάση στην προσομοίωση διεργασιών ΧΑΑ είναι προς την κατεύθυνση σύζευξης μοντέλων μεταφοράς και κινητικής, όπου το σύστημα των εξισώσεων διατήρησης μάζας, ορμής και ενέργειας συμπληρώνεται με μοντέλα κινητικής που περιγράφουν με ικανοποιητική ακρίβεια τη χημική απόθεσης [Naik et al., 1998; Carra and Masi, 1998; Kommu et al., 2000]. Οι πρόσφατες ερευνητικές προσπάθειες οδήγησαν στην ανάπτυξη αξιόπιστων μοντέλων υπολογιστικής ρευστοδυναμικής (Computational Fluid Dynamics, CFD) για την προσομοίωση των φαινομένων μεταφοράς [Kleijn, 2000; Ile et al., 2004]. Η έλλειψη, σε σημείο, μοντέλων χημικής κινητικής για αρκετά χημικά συστήματα αποτελεί στις μέρες μας το σημαντικότερο πρόβλημα, που εμποδίζει την ολοκλήρωση του σχεδιασμού συστημάτων ΧΑΑ. Από την πλευρά των πιθανών χημικών αντιδράσεων και τα συνακόλουθα σενάρια κινητικής, η προσομοίωση σε συνδυασμό με το πείραμα προσφέρει τη δυνατότητα, αν όχι του καθορισμού της ισχύουσας κινητικής, τουλάχιστον του αποκλεισμού πολλών υποψηφίων σεναρίων.
Η προσομοίωση διεργασιών XAA περιλαμβάνει υπολογισμούς σε σύνθετα τριδιάστατα χωρία και σε ευφεία χωρική κλίμακα, που υπαγορεύονται από την ανάγκη ρεαλιστικής αναπαράστασης της γεωμετρίας των αντιδραστήρων και το μεγάλο εύρος της χωρικής κλίμακας – από cm (διάμετρος αντιδραστήρα) μέχρι mm (πάχος υμενίου). Η αριθμητική επίλυση σε πολύ πυκνά πλέγματα, που διασφαλίζουν την αξιοπιστία των υπολογισμών, οδηγεί σε υπολογιστικά προβλήματα μεγάλης κλίμακας. Συνεπώς, απαιτείται χρήση αποδοτικών υπολογιστικών μεθόδων που εκμεταλλεύονται αρχιτεκτονικές παράλληλης επεξεργασίας [Sandia National Laboratories, 2001].

Επιπλέον, εξίσους μέθοδοι απαιτούνται για συστημική ανάλυση, οι οποίες θα αποτελούν μια μεθοδολογία “κέλυφος” περί τον προσωμοιωτή έτσι ώστε η “έξοδος” αυτού να αξιοποιείται για τη μη γραμμική ανάλυση και την ανάλυση βελτιστής λειτουργίας των αντιδραστήρων XAA, χωρίς επέμβαση στα “ενδότερα” του υπολογιστικού “πυρήνα” του προσωμοιωτή, δηλαδή, του μεγάλου, εμπορικού και μή διαθέσιμου σε πηγαία μορφή κώδικα CFD PHOENICS [CHAM, 2004].

1.2 Μεθοδολογία υλοποίησης υποέργου

Με βάση τα παραπάνω, βασική επιδίωξη του υποέργου ήταν η ανάπτυξη μιας ολοκληρωμένης και αξιοπιστής μεθοδολογίας ανάλυσης διεργασιών χημικής απόθεσης από ατμό με απώτερο στόχο την εξαγωγή πρακτικών συμπερασμάτων σε προβλήματα σχεδιασμού και βελτιστοποίησης συστημάτων XAA. Ειδική εφαρμογή αφορά στην ανάπτυξη υμενίων αγωγίμων μεταλλικών οξειδίων και υμενίων αλουμινίου που αποτελεί το αντικείμενο των πειραμάτων της έρευνας. Το υποέργο αναλύεται στα ακόλουθα Πακέτα Εργασίας (ΠΕ):

ΠΕ1: “Προσομοίωση”

Το ΠΕ1 περιλαμβάνει την ανάπτυξη ενός σχολαστικού προσωμοιωτή διεργασιών XAA. Συγκεκριμένα, η θεωρητική ανάλυση της διεργασίας ανάπτυξης υμενίων οξειδίου του κασσιτέρου (SnO₂) αποτέλεσε έργο της Μονάδας Υπολογιστικής Ρευστοδυναμικής (ΜΥΡ) της Σχολής Χημικών Μηχανικών του ΕΜΠ. Αρχικά, προσδιορίστηκαν λεπτομερώς τα φυσικο-χημικά φαινόμενα των διεργασιών XAA και μοντελοποιήθηκαν οι μηχανισμοί μεταφοράς μάζας, οριμάς και ενέργειας σε πολυσυστατικά αέρια μίγματα. Οι εξισώσεις μεταφοράς σε συνθήκες μόνης κατάστασης και στρωτής ροής συμπληρώθηκαν με κατάλληλες συνοριακές συνθήκες και καταστατικές σχέσεις και διακριτοποιήθηκαν με τη μέθοδο των πεπερασμένων όγκων ελέγχου. Για την εφαρμογή του προσωμοιωτή στη διεργασία ανάπτυξης υμενίων SnO₂ και την περιγραφή του εργαστηριακού αντιδραστήρα XAA, ο οποίος εξυπηρετεί την ταυτόχρονη πειραματική ανάλυση της διεργασίας XAA στο ΠΕ2, αναπτύχθηκε τριδιάστατο πλέγμα σε καμπυλλόγραμμου σύστημα συντεταγμένων. Το μή
γραμμικό σύστημα αλγεβρικών εξισώσεων που προέκυψε επιλύθηκε με τον κώδικα PHOENICS τον οποίο διαθέτει η Μονάδα Υπολογιστικής Ρευστοδυναμικής του ΕΜΠ.

Για την περιγραφή της χημικής κινητικής του συστήματος απόθεσης έγινε χρήση ετερογενών μηχανισμών "μιας κατεύθυνσης", οι οποίοι περιλαμβάνουν μια αντίστροπης αντιδράσεις απορρόφησης και εκρόφησης, ενώ το υμένιο σχηματίζεται μέσω αντιδράσεων τύπου Eley-Rideal. Αναπτύχθηκαν τέσσερις εναλλακτικοί μηχανισμοί και το αντίστοιχο κινητικό μοντέλο ενσωματώθηκαν στον προσομοιωτή διεργασιών ΧΑΑ. Οι τιμές των κινητικών παραμέτρων, για κάθε υποψήφιο μηχανισμό, υπολογίστηκαν μέσω μιας διαδικασίας που στηρίζεται στην ελαχιστοποίηση του σφάλματος πειραματικών μετρήσεων και προβλέψεων του προσομοιωτή.

Θα πρέπει να αναφέρουμε ότι διερευνήθηκε η απόδοση του λογισμικού βελτιστοποίησης EASY στο πρόβλημα της εκτίμησης του κινητικούς παραμέτρων. Το λογισμικό EASY που βασίζεται σε εξελικτικούς αλγορίθμους έχει αναπτυχθεί από τη συμμετοχή ομάδα του Εργαστηρίου Θερμικών Στροφολομηχανών της Σχολής Μηχανικών Μηχανικών του ΕΜΠ και χρησιμοποιήθηκε στο ΠΕ3 που θα περιγραφεί παρακάτω. Σε πρώτη φάση, η προτεινόμενη μεθοδολογία εκτίμησης των κινητικών παραμέτρων εφαρμόστηκε στη διεργασία της συναπόθεσης βολφραμίου /άνθρακα για την οποία υπήρχε διαθέσιμα πειραματικά δεδομένα στη βιβλιογραφία. Η ακρίβεια που απαιτείται στον υπολογισμό του ρυθμού ανάπτυξης του υμενίου είναι ιδιαίτερα υψηλή, αφού ακόμα και μικρές μεταβολές των κινητικών παραμέτρων μπορούν να προκαλέσουν σημαντικές μεταβολές στο ρυθμό ανάπτυξης του υμενίου. Επομένως, το διάστημα αναζήτησης των βέλτιστων τιμών των κινητικών παραμέτρων είναι πολύ μεγάλο, γεγονός που αυξάνει σημαντικά το υπολογιστικό κόστος της βελτιστοποίησης. Η μέχρι τώρα ερευνητική προσπάθεια δεν έχει οδηγήσει σε ενθαρρυντικά αποτελέσματα όσον αφορά στην αποδοτική χρήση του λογισμικού βελτιστοποίησης, κυρίως εξαιτίας του απαιγορευτικά μεγάλου υπολογιστικού χρόνου της διαδικασίας βελτιστοποίησης. Ετσι, η μέθοδος αυτή δε χρησιμοποιήθηκε τελικά στην εκτίμηση των κινητικών παραμέτρων των μοντέλων απόθεσης οξειδίου του κασσιτέρου.

Τέλος, ο προσομοιωτής που αναπτύχθηκε στα πλαίσια του υποέργου εφαρμόστηκε στην υπολογιστική ανάλυση της διεργασίας ανάπτυξης υμενίου αλουμινίου από διμεθυλάμινο αλάνινο (dimethylamine alane, DMEAA) σε συνθήκες χαμηλής πίεσης, για την οποία διεργασία υπήρξε δυνατότητα ταυτόχρονης πειραματικής μελέτης στο εργαστήριο CIRIMAT του CNRS-ENCIASET στην Τουλούζη της Γαλλίας. Τα μέλη της Γαλλικής ομάδας, με επικεφαλής τον Dr C. Vahlas, συμπεριλαμβάνεται στην ομάδα του παρόντος υποέργου. Για την περιγραφή της χημείας της απόθεσης αλουμινίου από DMEAA χρησιμοποιήθηκαν διαθέσιμα βιβλιογραφικά δεδομένα.

Μέρος των αποτελεσμάτων που προέκυψαν στο ΠΕ1 παρουσιάστηκαν στις ακόλουθες εργασίες (βλ. Παράρτημα):

ΠΕ2: “Πείραμα”

Η πειραματική ανάλυση της ανάπτυξης υμενίων αποτέλεσε έργο του Εργαστηρίου Ηλεκτροτεχνικών Υλικών (EHY) της Σχολής Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών (ΣχHMYY) του ΕΜΠ και της συνεργαζόμενης ομάδας του CIRIMAT του CNRS-ENCIASET στην Τουλουζή της Γαλλίας.

Αρχικά, πραγματοποιήθηκαν πειράματα ανάπτυξης υμενίων SnO2 στο ΕΜΠ, στα οποία μελετήθηκε η επιδράση σημαντικών λειτουργικών παραμέτρων (π.χ. θερμοκρασία υποστρώματος, σύσταση και παροχή μίγματος τροφοδοσίας) στις ιδιότητες των υμενίων. Μετά την ολοκλήρωση των πειραμάτων απόθεσης ακολουθήσει χαρακτηρισμός των παραγόμενων υμενίων. Ειδικότερα, μελετήθηκε η δομή και η σύσταση των υμενίων, ενώ έγιναν οπτικές μετρήσεις και μετρήσεις ηλεκτρικής αντίστασης. Οι οπτικές μετρήσεις πραγματοποιήθηκαν σε συνεργασία με το Ινστιτούτο Μικροηλεκτρονικής του Ε.ΚΕ.Φ.Ε. "Δημοκρίτου". Επιπλέον, έγιναν μετρήσεις του μέσου πάχους του υμενίου στην άξονική και στην εγκάρσια διεύθυνση του υποστρώματος. Μέσω της ανάδρασης με την προσομοίωση (ΠΕ1), τα αποτελέσματα του πειράματος (ΠΕ2) αξιοποιήθηκαν τόσο για τη διερεύνηση της χημικής κινητικής της απόθεσης SnO2, όσο και για την αναβάθμιση της πειραματικής διάταξης. Επίσης, διερευνήθηκε (α) η δυνατότητα χρήσης του Sn(CH3)4 ως εναλλακτικού πρόδρομου υλικού και (β) η δυνατότητα χρήσης των υμενίων SnO2 ως στοιχείων αίσθησης υδρογόνου.
Όσον αφορά στη δυνατότητα χρήσης των υμενίων SnO2 ως στοιχείων αίσθησης υδρογόνου, στόχος της διερεύνησης ήταν η μείωση της θερμοκρασίας λειτουργίας ακόμα και σε θερμοκρασία περιβάλλοντος, χωρίς εκφυλισμό των χαρακτηριστικών μεγεθών αίσθησης. Τα αποτελέσματα που προέκυψαν είναι ενθαρρυντικά για τη δυνατότητα αξιοποίησης τέτοιων διατάξεων ως στοιχεία αίσθησης υδρογόνου.

Στη συνέχεια, μελετήθηκε ο επανασχεδιασμός του εργαστηριακού αντιδραστήρα ΧΑΑ για την πειραματική ανάλυση της ανάπτυξης υμενίων ZnO. Η πρώτη ουσιαστική μετατροπή αφορά στο σύστημα θέρμανσης. Στο νέο αντιδραστήρα ΧΑΑ η θέρμανση των υποστρώμάτων θα πραγματοποιείται μέσω επαφής και ακτινοβολίας ταυτόχρονα ή επιλεκτικά. Η διάταξη των ηλεκτρικών αντιστάσεων και των λαμπτήρων θα ελέγχεται μέσω διπλού ρυθμιστή θερμοκρασίας PID. Η διάταξη παροχής αερίων δεν διαφέρει ουσιαστικά από την υπάρχουσα. Ως πρόδρομο υλικό για την απόθεση ZnO επιλέχθηκε η οργανομεταλλική ένωση δι-αιθυλο-ψευδάργυρος (diethyl-zinc, DEZn).

Τέλος, στην Τουλούζη της Γαλλίας πραγματοποιήθηκαν πειράματα ανάπτυξης υμενίων αλουμινίου από DMEAA. Η χρήση μεθόδων οι οποίες περιλαμβάνουν οργανομεταλλικές ενώσεις (OMXAA, MOCVD-metal organic chemical vapor deposition), αποτελεί στις μέρες μας μία από τις τεχνολογικές προκλήσεις που συνδέονται με την παρασκευή επικαλύψεων από σύνθετα μεταλλικά κράματα που βασίζονται στο αλουμινίο. Μελετήθηκε η επίδραση της θερμοκρασίας υποστρώματος στο ρυθμό ανάπτυξης του αλουμινίου, ο υπολογισμός του οποίου έγινε με μέτρηση της αύξησης βάρους κάθε δείγματος.

Μέρος των αποτελεσμάτων που προέκυψαν στο ΠΕ2 παρουσιάστηκαν στις ακόλουθες εργασίες (βλ. Παράρτημα):

ΠΕ3: “Συστημική Ανάλυση”

Το ΠΕ3 περιελάμβανε τον εντοπισμό των περιοχών ευσταθείας και ασταθείς λειτουργίας αντιδραστήρα καθώς και τον προσδιορισμό των συνθηκών βέλτιστης λειτουργίας του αντιδραστήρα ΧΑΑ.

Η ανάπτυξη και εφαρμογή μεθόδων προβολής για αποδοτικό υπολογισμό λύσεων μόνιμης κατάστασης και τη διερεύνηση της ευστάθειας καταστάσεων λειτουργίας αντιδραστήρων ΧΑΑ αποτέλεσε έργο της ΜΥΡ/ΕΜΠ. Αυτό πραγματοποιήθηκε με την προσθήκη στον προσομοιωτή ενός κώδικα ‘κέλυφους’, ο οποίος εκτελεί υπολογισμούς επαναληπτικής γραμμικής άλγεβρας, κατά κύριο λόγο. Οι υπολογισμοί στον κώδικα κέλυφος δεν απαιτούν πίνακες (matrix-free) και συνεπώς δεν επεμβαίνουν στο ίδιο το λογισμικό υπολογιστικής ρευστοδυναμικής PHOENICS. Τα αποτελέσματα διαδοχικών επαναλήψεων του PHOENICS τροφοδοτούνταν απευθείας στον κώδικα κέλυφος. Ο κώδικας κέλυφος εφαρμόστηκε σε ένα διδακτάρα αντιδραστήρα ΧΑΑ και εντοπίστηκαν, μέσω ανάλυσης προβλήματος ιδιωτικών μικρής κλίμακας, οι κρίσιμες τιμές παραμέτρων, όπου μεταβάλλεται η ευστάθεια των λύσεων του προβλήματος μεγάλης κλίμακας, δηλαδή των εξισώσεων οι οποίες είναι οι καταστάσεις μόνιμης λειτουργίας του αντιδραστήρα ΧΑΑ. Στη συνέχεια, η προειδομένη μέθοδος εφαρμόστηκε σε ένα πιο απλοποιημένο πρόβλημα. Πρόκειται για ένα μοντέλο που περιγράφει τη λειτουργία ενός αυλατού αντιδραστήρα. Τα αποτελέσματα αναδεικνύουν τη σημαντική εξαρτησία που έχει η σύγκλιση από το σχήμα διακριτοποίησης των εξισώσεων.

Η ανάλυση βέλτιστης λειτουργίας αντιδραστήρων ΧΑΑ αποτέλεσε έργο της ΜΥΡ/ΕΜΠ με τη συνεισφορά της συνεργαζόμενης ομάδας του Εργαστηρίου Θερμικών Στροβιλομηχανών του ΕΜΠ. Βασική συμβολή της ομάδας ΕΘΣ/ΕΜΠ ήταν η διάθεση και προσαρμογή, στις ανάγκες του έργου, του λογισμικού βελτιστοποίησης EASY. Σε πρώτη φάση, αναπτύχθηκε το πλαίσιο επικοινωνίας του προσομοιωτή διεργασιών ΧΑΑ με την παράλληλη έκδοση του λογισμικού βελτιστοποίησης EASY. Στη συνέχεια, το πρόβλημα της ομοιομορφίας του πάχους του υμνίου διατυπώθηκε ως πρόβλημα βελτιστοποίησης ενός στόχου, επιλέχθηκαν οι μεταβλητές σχεδιασμού και καθορίστηκε η αντικειμενική συνάρτηση (στόχος). Πραγματοποιήθηκαν τρεις υπολογισμοί βελτιστοποίησης (Optimization Runs, OR), οι οποίοι περιλαμβάνουν διαφορετικές μεταβλητές σχεδιασμού. Τα αποτελέσματα δείχνουν ότι η αντικειμενική συνάρτηση μειώνεται 1 τάξη μεγέθους από τον υπολογισμό βελτιστοποίησης μίας παραμέτρου (OR1) στον υπολογισμό βελτιστοποίησης πέντε παραμέτρων (OR3). Αντίστοιχα, η ανοιχτομορφία μειώνεται από 4.2% (OR1) σε 1.2% (OR3), τιμή αποδεκτή για βιομηχανικές εφαρμογές. Μέρος των αποτελεσμάτων που προέκυψαν παρουσιάστηκαν στις ακόλουθες εργασίες (βλ. Παράρτημα):

K. C. Giannakoglou, “Progress in metamodel assisted evolutionary algorithms with applications in external aerodynamics and turbomachinery”, in Proceedings of the EUROGEN 2005 International Conference (Munich, Germany, September 12-14 2005)

Τέλος, μια συνολική παρουσίαση των αποτελεσμάτων που προέκυψαν από το υποέργο παρουσιάστηκε στο Συνέδριο ΠΥΘΑΓΟΡΑΣ (βλ. Παράρτημα):

Θ.Χ. Ξενίδου, Ε.Δ. Κορωνάκη, Α.Γ. Μπουντουβής, Ν.Χ. Μαρκάτος, Ε. <πούρθης, Ν. Μπρίλης, Δ.Μ. Τσαμάκης, Β. Ασούτη, Κ.Χ. Γιαννάκαγλου, “Σχολιαστική προσομοίωση, συστημική ανάλυση και πειραματική διερεύνηση διεργασιών χημικής απόθεσης από ατμό. Εφαρμογή στην ανάπτυξη λεπτών υμείων αγωγίων μεταλλικών οξειδίων”, Πρακτικά Συνεδρίου “ΠΥΘΑΓΟΡΑΣ”, σελ. 441-448 (Πλωμάρι Λέσβου, 5-8 Ιουλίου 2007).

Οι επιμέρους δραστηριότητες και τα αποτελέσματα που προέκυψαν στα πλαίσια των πακέτων εργασίας ΠΕ1 – ΠΕ3 περιγράφονται αναλυτικά στα επόμενα κεφάλαια. Ένα σχηματικό διάγραμμα της μεθοδολογίας που αναπτύχθηκε και υλοποιήθηκε στα επιμέρους πακέτα εργασίας που αναφέρθηκαν παραπάνω, παρουσιάζεται στο Σχήμα 1.3.

Σχήμα 1.3 Μεθοδολογία ανάλυσης και σχεδιασμού συστημάτων ΧΑΑ
1.3 Ερευνητές και συμβολή στο υπόγεργο

Ο Δρ. Μηχανικός Μεταλλείων - Μεταλλουργών Ελευθέριος Μπούριθης, μεταδιδακτορικός ερευνητής πλήρους απασχόλησης, ήταν ο κύριος υπεύθυνος για τη διεξαγωγή των πειραμάτων απόθεσης λεπτών υμειών οξειδίου του κασσιτέρου στον εργαστηριακό αντιδραστήρα ΧΑΑ. Υποστήριξε τις οπτικές μετρήσεις που πραγματοποιήθηκαν σε συνεργασία με το Ινστιτούτο Μικροηλεκτρονικής του Ε.ΚΕ.Φ.Ε. “Δημόκριτος” ενώ συμμετείχε στο χαρακτηρισμό της δομής με ηλεκτρονική μικροσκοπία σάρωσης (SEM) και στη μελέτη της σύστασης των υμειών με τη μέθοδο περίβλεψης ακτίνων X (XRD). Συμμετείχε στις μετρήσεις πάχους των υμειών με χρήση ελλειψιομέτρου. Επιπλέον, υποστήριξε τον επανασχεδιασμό του αντιδραστήρα για την απόθεση υμειών ZnO.

Η Δρ. Χημικός Μηχανικός Θεόδωρα Ξενίδου ήταν η κύρια υπεύθυνη για την ανάπτυξη του σχολαστικού προσομοιωτή διεργασιών ΧΑΑ και την ενσωμάτωση αυτού στο πακέτο υπολογιστικής ρευστοδυναμικής PHOENICS. Υποστήριξε τη διερεύνηση του μηχανισμού ανάπτυξης υμειών οξειδίου του κασσιτέρου και την εκτίμηση των κινητικών παραμέτρων των μοντέλων απόθεσης. Επιπλέον, ήταν η κύρια υπεύθυνη για την προσομοίωση του αντιδραστήρα ανάπτυξης υμειών αλουμινίου. Τέλος, συμμετείχε στη βελτιστοποίηση των λειτουργικών παραμέτρων του αντιδραστήρα ΧΑΑ, μέσω σύζευξης του προσομοιωτή ΧΑΑ με τον εξελικτικό αλγόριθμο EASY.

Ο Δρ. Χημικός Μηχανικός Αντώνης Σπυρόπουλος ήταν ο κύριος υπεύθυνος για την ανάπτυξη υπολογιστικού κώδικα κατάλληλου για παράλληλη επεξεργασία για την ανάλυση ευστάθειας των λύσεων που υπολογίζει ο προσομοιωτής διεργασιών ΧΑΑ.

Η Δρ. Χημικός Μηχανικός Ελένη Κορωνάκη υποστήριξε την ανάπτυξη και εφαρμογή των μεθόδων προβολής Krylon και αναδρομικής προβολής για την συστημική ανάλυση του αντιδραστήρα ΧΑΑ.

Ο Υ.Δ. Ευάγγελος Μεγαλός συμμετείχε στην εφαρμογή του προσομοιωτή διεργασιών ΧΑΑ στον εργαστηριακό αντιδραστήρα απόθεσης υμειών οξειδίου του κασσιτέρου.

Η Υ.Δ. Βαρβάρα Λασσούτη συμμετείχε στην ενσωμάτωση του εξελικτικού αλγόριθμου EASY στον προσομοιωτή διεργασιών ΧΑΑ.

Ο Υ.Δ. Νικόλαος Μπρήλης ασχολήθηκε με τις μετρήσεις ηλεκτρικής αντίστασης και συντελεστή Hall, συναρτήσεις της θερμοκρασίας. Υποστήριξε τον έλεγχο των υμειών ως στοιχείων αίσθησης υδρογόνου και τις οπτικές μετρήσεις για τη μελέτη του φάσματος διαπερατότητας των υμειών. Επιπλέον, συμμετείχε τον επανασχεδιασμό του αντιδραστήρα για την απόθεση υμειών ZnO.

Ο Ηλεκτρονικός Κωνσταντίνος Κονιδάρης υποστήριξε την αναβάθμιση του συστήματος ελέγχου και ρύθμισης της θερμοκρασίας στον εργαστηριακό αντιδραστήρα ΧΑΑ.
Πείραμα

2.1 Ανάπτυξη υμενίων SnO₂

2.1.1 Πειραματική διάταξη

Τα πειράματα ανάπτυξης υμενίων οξειδίου του κασσιτέρου (SnO₂) πραγματοποιήθηκαν στον εργαστηριακό αντιδραστήρα ψυχρών τοιχωμάτων του Σχήματος 2.1, που βρίσκεται εγκατεστημένος στο Εργαστήριο Ηλεκτροτεχνικών Υλικών της Σχολής Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ του Ε.Μ.Π. Τα γεωμετρικά χαρακτηριστικά του εργαστηριακού αντιδραστήρα συνοψίζονται στον Πίνακα 2.1, ενώ ένα απλοποιημένο διάγραμμα της πειραματικής διάταξης ΧΑΑ απεικονίζεται στο Σχήμα 2.2.

Πίνακας 2.1 Γεωμετρικά χαρακτηριστικά του εργαστηριακού αντιδραστήρα ΧΑΑ

<table>
<thead>
<tr>
<th>Μήκος αντιδραστήρα (cm)</th>
<th>40.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Διάμετρος αντιδραστήρα (cm)</td>
<td>11.00</td>
</tr>
<tr>
<td>Διάμετρος οπών εισόδου (cm)</td>
<td>0.38</td>
</tr>
<tr>
<td>Διάμετρος οπής εισόδου (cm)</td>
<td>1.62</td>
</tr>
<tr>
<td>Διάμετρος δίσκου πυριτίου (cm)</td>
<td>7.50</td>
</tr>
<tr>
<td>Μέγεθος τεμαχίου γραφίτη (cm³)</td>
<td>8.98 x 12.8 x 1.10</td>
</tr>
</tbody>
</table>
Σχήμα 2.1 Πειραματικό σύστημα απόθεσης υμενίων οξειδίου του κασσιτέρου (Εργαστήριο Ηλεκτροτεχνικών Υλικών, Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ, Ε.Μ.Π.)

Σχήμα 2.2 Σχηματικό διάγραμμα της (α) πειραματικής διάταξης και (β) της εισόδου των αερίων στη διεργασία απόθεσης οξειδίου του κασσιτέρου. F_o, F_p, F_d και F_o είναι οι ρυθμοί ροής του φέροντος αερίου, του πρόδρομος υλικού, του αερίου διαχωρισμού (ή σάρωσης) και του οξυγόνου αντίστοιχα. MFC είναι ρυθμιστές ροής μάζας (ροόμετρα).
Το πειραματικό σύστημα απόθεσης αποτελείται από: (i) το σύστημα των αερίων εισόδου, (ii) την πηγή ατμών του SnCl₄, (iii) τον αντιδραστήρα και (iv) τα συστήματα ελέγχου. Το σύστημα των αερίων εισόδου αποτελείται από δύο φιάλες που περιέχουν οξυγόνο και άζωτο υψηλής καθαρότητας. Το άζωτο χρησιμοποιείται ως φέρον αέριο και ως αέριο σάρωσης, επομένως, το σύστημα συλληνώνει του αξίτου αποθελείται ουσιαστικά από δύο γραμμές. Οι παροχές των αερίων εισόδου στις διάφορες γραμμές ροής καθορίζονται μέσω ρυθμιστών ροής μάζας (Mass Flow Controller, MFC).

Το πρόδρομο υλικό απόθεσης (SnCl₄), το οποίο είναι υγρό σε θερμοκρασία δωματίου, μεταφέρεται από την πηγή ατμών (bubbler) στο θάλαμο του αντιδραστήρα μέσω αερίου αξίτου (φέρον αέριο). Η ποσότητα του πρόδρομου υλικού που εισέρχεται στο αντιδραστήρα ελέγχεται μέσω παρακολούθησης: (i) της θερμοκρασίας στο χώρο της πηγής, (ii) της παροχής του φέροντος αερίου και (iii) της πίεσης στο χώρο πηγής λόγω της διέλευσης του φέροντος αερίου. Ο υπολογισμός της παροχής του πρόδρομου υλικού, και επομένως, της σύστασης του αντιδρώντος μήματος θα περιγραφεί αναλυτικά στο επόμενο κεφάλαιο.

Ο αντιδραστήρας αποτελείται από έναν οριζόντιο θάλαμο κυλινδρικού σχήματος κατασκευασμένο από χαλαζία. Στο κέντρο του αντιδραστήρα τοποθετείται ορθογώνιο παράλληλοπεδίο τεμάχιο από γραφίτη, υλικό με υψηλή θερμική αγοιμότητα. Το τεμάχιο αυτό αποτελεί το υπόβαθρο πάνω στο οποίο τοποθετούνται τα προς απόθεση υποστρώματα. Μέσω σκελετού από χαλαζία ο γραφίτης στηρίζεται ακουμπώντας στο κάτω εσωτερικό κοίλο τοίχωμα του αντιδραστήρα.

Τα αέρια εισέρχονται στον αντιδραστήρα μέσω πέντε διαφορετικών οπών όπως φαίνεται στο Σχήμα 2.2β. Το οξυγόνο εισέρχεται στο θάλαμο απόθεσης μέσω των δύο ανώτερων οπών, ενώ για την εισόδο του μίγματος των ατμών SnCl₄ και του αερίου αξίτου χρησιμοποιούνται οι δύο κατώτερες οπές. Το άζωτο σύρος (ή διαχωρισμού) εισέρχεται μέσω της κεντρικής οπής εισόδου με παροχή κατά πολύ μεγαλύτερη από τις παροχές του οξυγόνου και του μίγματος ατμών SnCl₄ και αξίτου, όποτε θα διαχωριστεί για να περιόρισει την επαφή τους πάνω στο θερμανόμενο υπόστρωμα. Τα αντιδρώντα που δεν αντέδρασαν και τα προϊόντα της αντίδρασης εξέρχονται από τον αντιδραστήρα σε συνθήκες ατμοσφαιρικής πίεσης και καταλήγουν σε δοχείο που περιέχει ΚΟΗ για την εξουδετέρωση του χλωρίου που παράγεται από τη χημική αντίδραση απόθεσης.

Για τη θέρμανση της επιφάνειας του υποστρώματος σε σχετικά υψηλές θερμοκρασίες, στις οποίες επιτυγχάνεται η αντίδραση απόθεσης, χρησιμοποιούνται έξι λαμπτήρες αλογόνου, ηλεκτρικής ενέργειας 1000W η καθεμιά. Θερμομετρία το οποίο προσαρμόζεται μέσω οπής στο γραφίτη συνδέεται με ηλεκτρονική συσκευή ελέγχου και ρύθμισης της θερμοκρασίας. Για την ψύξη των τουχώματων και την αποφυγή της απόθεσης υλικού στις επιφάνειες αυτών χρησιμοποιούνται ανεμιστήρες τοποθετημένοι περιμετρικά και γύρω από το θάλαμο του αντιδραστήρα. Η θερμοκρασία των στερεών τουχώματων καθώς επίσης και η θερμοκρασία στο χώρο πηγής του SnCl₄ και στην περιοχή εισόδου του αντιδραστήρα παρακολουθείται με
χρήση κατάλληλων θερμοστοιχείων. Τέλος, για τη μέτρηση της πίεσης στο δοχείο του SnCl₄ χρησιμοποιείται κατάλληλο μανόμετρο.

Στα πειράματα απόθεσης SnO₂ πάνω σε υποστρώματα Si, SiO₂ και γυαλιού, διερευνήθηκε η εξάρτηση των ιδιοτήτων των υμενίων από:

- παροχή αζώτου σάρωσης
- παροχή οξυγόνου
- θερμοκρασία υποστρώματος
- παροχή πρόδρομου υλικού

Στον Πίνακα 2.2 συνοψίζεται το εύρος των λειτουργικών παραμέτρων που μελετήθηκαν στα πειράματα απόθεσης οξειδίου του κασσιτέρου.

Πίνακας 2.2 Συνθήκες λειτουργίας για την απόθεση οξειδίου του κασσιτέρου

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Εύρος λειτουργίας</th>
<th>Συνθήκες αναφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πίεση λειτουργίας (atm)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Παροχή N₂ φέροντος (ml/min)¹</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Παροχή N₂ σάρωσης (ml/min)¹</td>
<td>200 - 400</td>
<td>400</td>
</tr>
<tr>
<td>Παροχή O₂ (ml/min)¹</td>
<td>120 - 210</td>
<td>150</td>
</tr>
<tr>
<td>Θερμοκρασία υποστρώματος (°C)</td>
<td>390 - 510</td>
<td>470</td>
</tr>
<tr>
<td>Θερμοκρασία πηγής SnCl₄ (°C)</td>
<td>22.80 – 30.14</td>
<td>24.2</td>
</tr>
<tr>
<td>Χρόνος απόθεσης (min)</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

¹ στους 20°C και 1bar

2.1.2 Χαρακτηρισμός υμενίων SnO₂

Μετά το στάδιο της απόθεσης, ακολούθησε ανόπτηση (annealing) στο θάλαμο του αντιδραστήρα σε ατμόσφαιρα αζώτου σάρωσης, σε θερμοκρασία 600°C για 10min. Η επεξεργασία αυτή έγινε κυρίως για τη βελτίωση της κρυσταλλικότητας και τη διευθέτηση της μικροδομής των λεπτών υμενίων οξειδίου του κασσιτέρου. Στη συνέχεια ακολούθησε χαρακτηρισμός των παραγόμενων υμενίων που περιλαμβάνει τα ακόλουθα στάδια:

- Μελέτη σύστασης με τη μέθοδο περίθλασης ακτίνων X

Τα υμένια οξειδίου του κασσιτέρου που αναπτύχθηκαν πάνω σε υποστρώματα πυριτίου (Si) και οξειδίου του πυριτίου (SiO₂) μελετήθηκαν με τη μέθοδο περίθλασης ακτίνων X. Το όργανο που χρησιμοποιήθηκε είναι ένα περίθλασιμετρο Siemens 5000 εφοδιασμένο με μονοχρωμάτορα. Η ακτινοβολία που χρησιμοποιήθηκε είναι η Kα του χαλκού (Cu) με μήκος κύματος λ=1,54056. Τυπικά φάσματα που αποκτήθηκαν εμφανίζονται στο Σχήμα 2.3 και 2.4.
Σχήμα 2.3 Περίθλαση ακτίνων X υμενίων SnO₂ πάνω σε υπόστρωμα Si

Σχήμα 2.4 Περίθλαση ακτίνων X υμενίων SnO₂ πάνω σε υπόστρωμα SiO₂

Οι πλεγματικές αποστάσεις (d) των κρυσταλλογραφικών επιπέδων του SnO₂ υπολογίστηκαν από τα αντίστοιχα διαγράμματα χρησιμοποιώντας τον νόμο του Bragg (εξίσωση 2.1). Τα αποτελέσματα δίνονται στον Πίνακα 2.3.

\[d = \frac{n\lambda}{2\sin\theta}, \quad n = 1 \] \hspace{1cm} (2.1)

Πίνακας 2.3 Αποτελέσματα περίθλασης ακτίνων X

<table>
<thead>
<tr>
<th>hkl</th>
<th>d (θεωρητικό)</th>
<th>d (φάσματος)</th>
<th>T_hkl</th>
<th>d (φάσματος)</th>
<th>T_hkl</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>3.362</td>
<td>3.342</td>
<td>0.413</td>
<td>3.355</td>
<td>0.563</td>
</tr>
<tr>
<td>101</td>
<td>2.654</td>
<td>2.627</td>
<td>1.042</td>
<td>2.627</td>
<td>1.042</td>
</tr>
<tr>
<td>200</td>
<td>2.377</td>
<td>2.366</td>
<td>0.375</td>
<td>2.390</td>
<td>0.478</td>
</tr>
<tr>
<td>211</td>
<td>1.771</td>
<td>1.754</td>
<td>0.266</td>
<td>1.752</td>
<td>0.383</td>
</tr>
<tr>
<td>002</td>
<td>1.599</td>
<td>1.583</td>
<td>0.125</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
Με την τεχνική της περίθλασης ακτίνων X είναι δυνατή η εύρεση ευνοϊκού κρυσταλλογραφικού επιπέδου στο οποίο αναπτύσσεται το υμένιο. Για να είναι δυνατή αυτή η μέτρηση, το διάγραμμα περίθλασης ακτίνων X κανονικοποιείται με μέγιστη τιμή το 100. Στη συνέχεια, η σχετική ένταση κάθε κρυσταλλογραφικού επιπέδου (I) συγκρίνεται με την πρότυπη ένταση I₀, έτσι, προκύπτει ο συντελεστής προσανατολισμού (Tₙₖ₁ = I/I₀). Είναι προφανές ότι όταν δεν υπάρχει ευνοϊκός προσανατολισμός, ο συντελεστής προσανατολισμού παίρνει την τιμή 1. Τα αποτελέσματα φαίνονται στον Πίνακα 2.3 καθώς και στο Σχήμα 2.5.

Σχήμα 2.5 Συντελεστής προσανατολισμού υμενίων SnO₂ σε υπόστρωμα Si και SiO₂

Από το διάγραμμα περίθλασης ακτίνων X και πιο συγκεκριμένα από την διεύρυνση των κορυφών του φάσματος, είναι δυνατόν να εκτιμηθεί το μέσο μέγεθος των κόκκων του υλικού (D). Το τελευταίο δίνεται από την εξίσωση του Scherrer (εξίσωση 2.2) αρκεί το μέσο μέγεθος του κόκκου να βρίσκεται μεταξύ 20Å και 3000Å.

\[D = \frac{k\lambda}{\beta \cos \theta}, \quad k=1 \] \hspace{1cm} (2.2)

Η διεύρυνση β μιας κορυφής του φάσματος σε γονία θ επηρεάζεται από πολλούς παράγοντες πράγμα που κάνει δύσκολη την ακριβή της μέτρηση. Έτσι από την φαινόμενη διεύρυνση μιας κορυφής του φάσματος Β₀ πρέπει να αφαιρεθεί η επιπλέον διεύρυνση b που οφείλεται σε τάσεις, χημικό διαφορισμό, ανομοιομορφία στο μέγεθος των κόκκων και διάφοροι άλλοι παράγοντες που έχουν να κάνουν με τη συσκευή μέτρησης. Για λόγους ευκολίας αρκετοί επιστήμονες, θωρώντας ότι η καμπάνα της κάθε κορυφής του φάσματος περιγράφεται από
μια Gaussian συνάρτηση, χρησιμοποιούν την εξίσωση (2.3) για την εύρεση της πραγματικής διεύρυνσης μιας κορυφής του φάσματος από το μέγεθος του κόκκου:

\[\beta^2 = B_0^2 - b^2 \]

(2.3)

όπου \(B_0 \) το πλάτος στο μισό του ύψους της κορυφής του φάσματος σε γωνία \(\theta \) και \(b \) το πλάτος στο μισό του ύψους της κορυφής του φάσματος στην ίδια γωνία \(\theta \) δείγματος πολυκρυσταλλικής λεπτής σκόνης του ιδίου υλικού.

Από τα φάσματα περίθλασης ακτίνων X των υμενίων SnO\(_2\) χρησιμοποιώντας την κορυφή (101) ως πιο αντιπροσωπευτική έχουμε ότι το μέσο μέγεθος κόκκου του υμενίου πάνω σε υπόστρωμα Si είναι 0.15±0.02\(\mu\)m ενώ το αντίστοιχο υμένιο πάνω σε υπόστρωμα SiO\(_2\) έχει μέσο μέγεθος κόκκου 0.12±0.03\(\mu\)m. Πρέπει να σημειωθεί ότι οι τιμές αυτές είναι ενδεικτικές και πρέπει να επαληθευτούν με άλλες τεχνικές στο άμεσο μέλλον. Τέλος την ακρίβεια της μεθόδου θα βελτιώσει η εξέταση, ως υλικού αναφοράς, δείγματος πολυκρυσταλλικής σκόνης οξειδίου του κασσιτέρου.

• Μελέτη δομής με ηλεκτρονική μικροσκοπία σάρωσης

![SEM photos](attachment:SEM_photos.png)

Σχήμα 2.6 Φωτογραφίες SEM των λεπτών υμενίων οξειδίου του κασσιτέρου σε θερμοκρασία υποστρώματος (α) 430°C (μεγέθυνση 8.4x10\(^3\)), (β) 470°C (μεγέθυνση 4.4x10\(^3\)) και (γ) 500°C (μεγέθυνση 2.2x10\(^3\))
Για τη μελέτη της μορφολογίας της επιφάνειας των παραγόμενων υμενίων SnO2 χρησιμοποιήθηκε η τεχνική της Ηλεκτρονικής Μικροσκοπίας Σάρωσης (Scanning Electron Microscopy, SEM). Οι μετρήσεις έγιναν στο Ινστιτούτο Μικροηλεκτρονικής του Ε.ΚΕ.Φ.Ε. “Δημόκριτος”. Στα Σχήματα 2.6a, β και γ παρουσιάζονται οι μικροφωτογραφίες SEM των παραγόμενων υμενίων σε θερμοκρασία υποστρώματος 500°C, 470°C και 430°C, αντίστοιχα. Από τις μικροφωτογραφίες SEM προκύπτει ότι τα παραγόμενα υμένια είναι πολύ καλής ποιότητας με ενιαία λειά επιφάνεια χωρίς ατέλειες και χωρίς την εμφάνιση τραχύτητας.

- Οπτικές μετρήσεις

Φασματοφωτόμετρο διπλής δέσμης χρησιμοποιήθηκε για τις μετρήσεις φάσματος διαπερατότητας υμενίων που αναπτύχθηκαν πάνω σε γυαλί. Από τις μετρήσεις αυτές προσδιορίσθηκε η μέγιστη οπτική διαπερατότητα (87%) για μήκη κύματος > 300nm και για θερμοκρασία απόθεσης 430°C.

- Μετρήσεις ηλεκτρικής αντίστασης και συντελεστή Hall

Από τις μετρήσεις με τη μέθοδο τεσσάρων επαφών του Van der Pauw προέκυψαν σχεδόν σταθερές τιμές της ειδικής αντίστασης με εύρος τιμών 0.003 – 0.004 Ω.cm για τις διάφορες θερμοκρασίες απόθεσης. Με την ιδιαίτερα μέθοδο πραγματοποιήθηκαν μετρήσεις συντελεστή Hall, οπότε προσδιορίσθηκε ο τύπος των φορέων αγωγιμότητας (n-τύπου), η κινητικότητα (1 – 7 cm2/V.sec) και η συγκέντρωσή τους (6.6*1020 – 3.3*1021 cm-3).

- Μετρήσεις πάχους με χρήση ελλειψομέτρου

Εξαιτίας αδυναμίας προκαθορισμού της θερμοκρασίας στο χώρο της πηγής SnCl4 (bubbler), η πηγή ατμού του SnCl4 είναι εκτεθειμένη στην θερμοκρασία του πειραματικού θαλάμου, με αποτέλεσμα η παροχή του SnCl4 να μεταβάλλεται σε κάθε πείραμα απόθεσης. Για το λόγο αυτό στους πίνακες που ακολουθούν, σε κάθε πείραμα απόθεσης αναφέρεται και η θερμοκρασία της πηγής του SnCl4. Εξαιτίας της μεταβολής της παροχής του πρόδρομου υλικού και συνεπώς της σύστασης του αντιδρόντος μίγματος σε κάθε πείραμα, είναι ιδιαίτερα δύσκολο να εξάγουμε ασφαλή συμπεράσματα σχετικά με την επίδραση των λειτουργικών παραμέτρων στο μέσο ρυθμό ανάπτυξης των υμενίων οξειδίου του κασσίτερου.

Η επίδραση της θερμοκρασίας υποστρώματος στο πάχος του υμενίου SnO2 παρουσιάζεται στον Πίνακα 2.4. Τα αποτελέσματα δείχνουν ότι αύξηση της θερμοκρασίας υποστρώματος προκαλεί ταυτόχρονη αύξηση του ρυθμού απόθεσης, άρα και του πάχους του υμενίου, μέχρι τους 450°C.
Πίνακας 2.4 Εξάρτηση του πάχους του υμενίου SnO2 από τη θερμοκρασία υποστρώματος

<table>
<thead>
<tr>
<th>Θερμοκρασία υποστρώματος (°C)</th>
<th>Θερμοκρασία πηγής SnCl4 (°C)</th>
<th>Μέσος όρος πάχους υμενίου στην αξονική διεύθυνση (nm)</th>
<th>Μέσος όρος πάχους υμενίου στην εγκάρσια διεύθυνση (nm)</th>
<th>Μέσος όρος πάχους υμενίου (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>390</td>
<td>24.40</td>
<td>997.69</td>
<td>976.25</td>
<td>986.97</td>
</tr>
<tr>
<td>410</td>
<td>23.20</td>
<td>975.64</td>
<td>1003.00</td>
<td>989.32</td>
</tr>
<tr>
<td>430</td>
<td>26.12</td>
<td>972.08</td>
<td>1042.88</td>
<td>1007.48</td>
</tr>
<tr>
<td>450</td>
<td>30.14</td>
<td>1018.38</td>
<td>1041.13</td>
<td>1029.75</td>
</tr>
<tr>
<td>470</td>
<td>28.28</td>
<td>1015.00</td>
<td>1014.50</td>
<td>1014.75</td>
</tr>
<tr>
<td>490</td>
<td>28.86</td>
<td>1015.71</td>
<td>997.13</td>
<td>1006.42</td>
</tr>
<tr>
<td>510</td>
<td>31.04</td>
<td>982.31</td>
<td>1029.38</td>
<td>1005.84</td>
</tr>
</tbody>
</table>

Η επίδραση της παροχής του αζώτου σάρωσης στο πάχος του υμενίου SnO2 παρουσιάζεται στον Πίνακα 2.5. Παρατηρούμε ότι μείωση της παροχής του αζώτου σάρωσης με ταυτόχρονη μείωση της θερμοκρασίας της πηγής ατμών, άρα και της σύστασης, οδηγεί σε μείωση του ρυθμού απόθεσης άρα και του πάχους του υμενίου. Μια πιθανή εξήγηση μπορεί να είναι το γεγονός ότι τα αντιδρώντα λόγω της μικρής παροχής αζώτου αντιδρούν πολύ πριν φθάσουν στην επιφάνεια του υποστρώματος πυριτίου, με αποτέλεσμα η ετερογενής αντίδραση απόθεσης να πραγματοποιείται περιορισμένα πάνω στο θερμαινόμενο υπόστρωμα.

Πίνακας 2.5 Εξάρτηση του πάχους του υμενίου SnO2 από την παροχή αζώτου σάρωσης

<table>
<thead>
<tr>
<th>Παροχή αζώτου σάρωσης (ml/min)</th>
<th>Θερμοκρασία πηγής SnCl4 (°C)</th>
<th>Μέσος όρος πάχους υμενίου στην αξονική διεύθυνση (nm)</th>
<th>Μέσος όρος πάχους υμενίου στην εγκάρσια διεύθυνση (nm)</th>
<th>Μέσος όρος πάχους υμενίου (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>28.28</td>
<td>1015.00</td>
<td>1014.50</td>
<td>1014.75</td>
</tr>
<tr>
<td>350</td>
<td>26.62</td>
<td>994.90</td>
<td>1028.00</td>
<td>1011.45</td>
</tr>
<tr>
<td>300</td>
<td>23.32</td>
<td>999.40</td>
<td>1002.70</td>
<td>1001.05</td>
</tr>
<tr>
<td>200</td>
<td>24.82</td>
<td>954.00</td>
<td>973.50</td>
<td>963.75</td>
</tr>
</tbody>
</table>

Η επίδραση της παροχής του οξυγόνου στο πάχος του υμενίου SnO2 παρουσιάζεται στον Πίνακα 2.6. Παρατηρούμε ότι με τη μείωση της παροχής του οξυγόνου ο ρυθμός απόθεσης του υμενίου, άρα και το πάχος του, έχει μια τάση αύξησης.
2.1.3 Διερεύνηση του Sn(CH₃)₄ ως εναλλακτικού πρόδρομου υλικού

Διερευνήθηκε η χρήση του Sn(CH₃)₄ ως πρόδρομο υλικό με οξειδωτικούς παράγοντες O₂, μεθανόλη, αιθανόλη και απιονισμένο Η₂Ο. Σε όλες τις περιπτώσεις η αντίδραση στο θάλαμο του αντιδραστήρα ήταν βίαιη εκτός από την αντίδραση του Sn(CH₃)₄ με την αιθανόλη. Με τον όρο «βίαιη αντίδραση» εννοείται ότι δεν ήταν δυνατή η απόθεση υμενίων με καλή συνάφεια, αλλά μάλλον κροκιδωμένου υλικού σε μορφή πούδρας. Στην περίπτωση της αιθανόλης, τα υμένια που προέκυψαν είχαν ειδική αντίσταση >25 Ω cm (94 Ω cm για θερμοκρασία απόθεσης 390°C, 56 Ω cm για 450°C και 25 Ω cm για 530°C). Στη διεθνή βιβλιογραφία, η χρήση του Sn(CH₃)₄ ως πρόδρομο υλικού συνήθως συνδυάζεται με σύστημα κενού (στην περίπτωση μας δεν υπήρχε) με καλά αποτελέσματα, ανάλογα με την εφαρμογή για την οποία προορίζονται [Li et al., 2001; Löffler et al., 2004], π.χ. οι τιμές που προέκυψαν, θεωρούνται πολύ υψηλές για χρήση των υμενίων ως διαφανή ηλεκτρόδια.

2.1.4 Έλεγχος των υμενίων SnO₂ ως στοιχείων αίσθησης υδρογόνου

Τα υμένια εκτέθηκαν σε ροή υδρογόνου εντός στεγανού θαλάμου, για την αποτύπωση της δυναμικής συμπεριφοράς της ηλεκτρικής τους αντίστασης σε διάφορες θερμοκρασίες λειτουργίας. Υμένια που απαντήθηκαν στους 390°C σε SiO₂ και γνωρίζει τη μέγιστη ευαισθησία (95% σε 2-3 min από την έκθεση τους στο H₂), ενώ υμένια πάνω σε υπόστρωμα Si εδείξαν μέγιστη ευαισθησία μόλις 11% (Σχήμα 2.7).
Σχήμα 2.7 Ευαισθησία υμενίων SnO2 σε υδρογόνο

Διερευνήθηκε περαιτέρω η δυνατότητα χρήσης των υμενίων SnO2 που προέκυψαν από τον αντιδραστήρα XAA ως στοιχείων αίσθησης υδρογόνου. Στόχος ήταν η μείωση της θερμοκρασίας λειτουργίας ακόμα και σε θερμοκρασία περιβάλλοντος, χωρίς εκφυλισμό των χαρακτηριστικών μεγεθών αίσθησης. Η αύξηση του ρυθμού και του πλήθους των αντιδράσεων αίσθησης στα υμένια που έχουν κατασκευαστεί σε χαμηλές θερμοκρασίες, λόγω χαμηλής κρυσταλλικότητας και άρα ενίσχυσης του φαινομένου διάχυσης προσφορούμενων μορίων ή ιόντων αερίου, εξήγησε τη βέλτιστη συμπεριφορά στις αντιδράσεις αίσθησης υμενίου που αποτέθηκε στη χαμηλότερη θερμοκρασία από όσες δοκιμάστηκαν. Υπολογίζεται ως υμένα που αναπτύχθηκαν στο 390°C σε SiO2 και γυαλί με παροχές οξυγόνου 150 ml/min και αζώτου σάρωσης 350 ml/min έδειξαν τη μέγιστη ευαισθησία (95% σε 2-3 min από την έκθεσή τους στο H2).

Μεταβολή των παροχών οξυγόνου και αξών του κατέληξε σε χαμηλότερες επιδόσεις αίσθησης υδρογόνου, όπως επιβεβαιώθηκε μετά από εξέταση όλων των δειγμάτων που κατασκευάστηκαν, ακόμα και σε θερμοκρασίες λειτουργίας κάτω των 150°C. Επομένως, για τις περιοχές τιμών των κατασκευαστικών παραμέτρων που διερευνήθηκαν, ο ανωτέρω αναφερόμενος συνδυασμός ήταν ο βέλτιστος από την άποψη των ιδιοτήτων αίσθησης.

Ενδελλητικός τρόπος για την επίτευξη χαμηλής θερμοκρασίας λειτουργίας αποτελεί η χρήση διόδων p-n [Hazra and Basu, 2005] στο περιβάλλον του προς ανίχνευση αερίου, όπως αναλύεται αμέσως παρακάτω.
Η χρήση διόδων p-n ως στοιχείων αίσθησης βασίζεται στην απογύμνωση της ενδιάμεσης περιοχής από φορτία οφειλόμενα στην έλλειψη στοιχειομετρίας στο υμένιο, κατά την εφαρμογή ανάστροφης πόλωσης [Yu and Choi, 1999; Ling and Leach, 2004]. Ετσι, μειώνεται αισθητά ο απαιτούμενος αριθμός αντιδράσεων αίσθησης για τον έλεγχο της αγωγιμότητας από τους φορείς που προσδίδονται στο υμένιο από τα άτομα ή ιόντα του αερίου.

Για το σκοπό αυτό, αποτέθηκε με τρόπο παλμικής απόθεσης από laser (PLD), με χρήση laser ArF 193nm, υμένιο NiO με ειδική αντίσταση 0,044 Ω.cm και πάχος περίπου 300nm. Η απόθεση πραγματοποιήθηκε παρουσία οξυγόνου σε πίεση 0,4 mbar και θερμοκρασία υποστρώματος 300°C. Στη συνέχεια, στη μισή επιφάνεια του NiO αποτέθηκε κειμένιο SnO2 στον αντιδραστήρα ΧΑΑ σε θερμοκρασία 470°C, με παροχές οξυγόνου 210 ml/min (για μειωμένη πυκνότητα φορέων λόγω μικρού πλήθους ατελειών) και αζώτου σάρωσης 300 ml/min, συγκέντρωση ελεύθερων ηλεκτρονίων 7x10^{-17} cm^{-3} και κινητικότητα 2 cm²/V.sec και ειδική αντίσταση 0,03 Ω.cm. Το πάχος του ήταν περίπου 500nm και η απόθεση διήρκεσε 5min για μείωση των θερμικών καταπονήσεων του NiO.

Σχήμα 2.8 I-V χαρακτηριστικές σε διάφορες θερμοκρασίες λειτουργίας για την ετεροδομή p-NiO/n-SnO2 παρουσία και μη οξυγόνου προς ανίχνευση
Στις δύο περιοχές (NiO-p και SnO₂-n) δημιουργήθηκαν ομικές επαφές με χρήση ειδικής πάστας Ag (silver paste). Πραγματοποιήθηκαν I-V μετρήσεις (ορθής και ανάστροφης πόλωσης) σε διάφορες θερμοκρασίες H₂ και μη. Τα αποτελέσματα φαίνονται στο Σχήμα 2.8. Από τα αποτελέσματα αυτά γίνεται βεβαίο ότι στη θερμοκρασία των 28°C το δείγμα παρουσιάζει συμπεριφορά διόδου p-n απουσία υδρογόνου, ενώ όταν υπάρχει υδρογόνο η συμπεριφορά του γίνεται ομική. Στους 60°C υπάρχει ομική επαφή χωρίς το υδρογόνο, ενώ με το υδρογόνο συμπεριφορά διόδου p-n τόσο κατά την απουσία όσο και κατά την παρουσία του υδρογόνου. Στη θερμοκρασία των 90°C υπάρχει ομική επαφή χωρίς το υδρογόνο, ενώ στη θερμοκρασία των 150°C υπάρχει ομική συμπεριφορά και στις δύο περιπτώσεις. Η μεταβολή της ηλεκτρικής συμπεριφοράς ακόμη και σε θερμοκρασία περιβάλλοντος καταδεικνύει τη δυνατότητα αξιοποίησης τέτοιων διατάξεων ως στοιχεία αίσθησης υδρογόνου.

Στην περίπτωση που εξετάζουμε αποτέθηκε με μέθοδο παλμικής απόθεσης από laser (PLD), με χρήση laser KrF 239nm, υμένιο ZnO με ειδική αντίσταση 0,0017 Ω.cm, πυκνότητα φορέων 3,5x10²⁰, κινητικότητα φορέων 12 cm²/V.sec όπως προέκυψαν από μετρήσεις με τη μέθοδο Van der Pauw και πάχος περίπου 300nm. Η απόθεση πραγματοποιήθηκε παρουσία οξυγόνου σε πίεση 10⁻⁴ mbar και θερμοκρασία υποστρώματος 350°C. Στη συνέχεια, στη μισή επιφάνεια του ZnO αποτέθηκε υμένιο SnO₂ στον αντιδραστήρα ΧΑΑ σε θερμοκρασία 390°C, με παροχές οξυγόνου 210 ml/min (για μειομένη πυκνότητα φορέων λόγο μικρού πλήθους ατελειών) και αζώτου σάρωσης 300 ml/min, συγκέντρωση ελεύθερων ηλεκτρονίων 1x10¹⁸ cm⁻³, κινητικότητα 2 cm²/V.sec και ειδική αντίσταση 0,03 Ω.cm. Το πάχος του ήταν περίπου 500nm και η απόθεση διήρκεσε 5min για μείωση των θερμικών καταπονήσεων του ZnO.

Σχήμα 2.9 Σχηματική αναπαράσταση της επεκτατικής n-SnO₂ / p-ZnO σε (100) p-Si υπόστρωμα.
Σχήμα 2.10 "I-V χαρακτηριστική της ετεροεπαφής p(ZnO)-n(SnO2)."

Στις δυο περιοχές (ZnO-p και SnO2-n) δημιουργήθηκαν ομικές επαφές με χρήση ειδικής πάστας Ag (silver paste) (Σχήμα 2.9). Πραγματοποιήθηκαν I-V μετρήσεις (ορθής και ανάστροφης πόλωσης) σε θερμοκρασία δωματίου παρουσία H2 και μη. Τα αποτελέσματα φαίνονται στα Σχήματα 2.10 και 2.11.

Σχήμα 2.11 "Χρονική απόκριση της ευαισθησίας (SI) της ετεροεπαφής p(ZnO)-n(SnO2) σε ροή μίγματος 3% H2 σε αέρα."
Στην περίπτωση των στοιχείων αίσθησης ανορθωτικού τύπου, η σχετική απόκριση (ευαισθησία) ορίζεται ως:

\[S_t = \frac{(I_g - I_o)}{I_o} \]

όπου \(I_o \) το ρεύμα για μια συγκεκριμένη τιμή ορθής πόλωσης σε περιβάλλον αέρα, ενώ \(I_g \) το ρεύμα για την ίδια τιμή ορθής πόλωσης σε περιβάλλον του προς αίσθηση αερίου.

Από το Σχήμα 2.10 φαίνεται πως η ηλεκτρική συμπεριφορά της ετερούσας αντιδρά στη ροή του μίγματος \(H_2 \) ακόμα και στους 25°C, χωρίς δηλαδή θερμική διέγερση. Οι χρόνοι απόκρισης κυμαίνονται μεταξύ 4 και 5 min και όμως με τους αντίστοιχους χρόνους για υμένια \(SnO_2 \) που λειτουργούν στους 180°C. Η μεταβολή αυτή της ηλεκτρικής συμπεριφοράς ακόμα και σε θερμοκρασία περιβάλλοντος καταδεικνύει τη δυνατότητα αξιοποίησης τέτοιων διατάξεων ως στοιχεία αίσθησης υδρογόνου με προφανή προτερήματα έναντι των απλών υμενίων λεπτών στρομάτων.

2.2 Ανάπτυξη υμενίων \(ZnO \)

2.2.1 Επανασχεδιασμός εργαστηριακού αντιδραστήρα \(XAA \)

Αποφασίστηκε η μετατροπή του υπάρχοντος αντιδραστήρα που λειτουργεί με θέρμανση δια ακτινοβολίας (λαμπτήρες αλογόνου). Στο νέο αντιδραστήρα \(XAA \), η θέρμανση των υποστρωμάτων θα πραγματοποιείται μέσω επαφής και ακτινοβολίας ταυτόχρονα ή επιλεκτικά. Η θέρμανση δια επαφής θα γίνεται μέσω τριών ηλεκτρικών αντιστάσεων πακτωμένων εντός ανοξείδωτου τεμαχίου διαστάσεων 8.00cm x 8.00cm x 1.4cm, όπου θα τοποθετείται το προς απόθεση υπότρομα. Το σύστημα αυτό θα πρέπει να είναι ώστε να λειτουργεί σε θερμοκρασίες 500°C επί μακρό χρονικό διάστημα. Το τεμάχιο θέρμανσης θα εξαρτάται αξιοποιώντας 30° γύρω από τον εγκάρσιο άξονα στήριξης που θα διέρχεται διαμέσου του. Πακτωμένη επίσης στο τεμάχιο αυτό θα βρίσκεται επαφή θερμοεξής τύπου Κ. Το σύστημα θα τοποθετηθεί συρόμενο εντός κουλίνδρου από χαλαζία εσωτερικής διαμέτρου 10cm και μήκους 50cm. Στα άκρα του χαλαζία θα τοποθετηθούν ειδικά ανοξείδωτα καπάκια με ειδικές οπές για την προσαγωγή των αερίων απόθεσης και την απαγωγή των προϊόντων μέσω αντλίας διάχυσης. Η χρήση αντλίας εκτός από την απαγωγή των προϊόντων, διευκολύνει την απόδοση των υμενίων σε χαμηλές θερμοκρασίες, λόγω μείωσης της απαιτούμενης ενέργειας ενεργοποίησης. Επιθυμητή τιμή πέσης στο θάλαμο είναι της τάξης μερικών mbar, οπότε και όπως προκύπτει από άλλες εργασίες η απαιτούμενη θερμοκρασία για παρασκευή καλά προσανατολισμένων υμενίων μετώπεται έως και κάτω των 200°C. Τα κατάκια θα στερεωθούν με κοχλιωτές συνδέσεις στην περιφέρεια τους σε δακτυλίους περαστούς με o-ring (για την απομόνωση του θαλάμου) στα άκρα του κουλίνδρου. Για τη διέλευση των καλωδίων ισχύος και θερμοεξής, το ένα κατάκι θα διαθέτει μονωμένη διάταξη διέλευσης (feed-through). Η όλη κατασκευή θα στηρίζεται σε μεταλλική υπερκατασκευή, επάνω στην οποία θα στηρίζονται 4 λαμπτήρες υπεριώδους ακτινοβολίας.
(UV- ozone free), ισχύος 15W και μήκους 23cm έκαστος, παράλληλα στην αξονική διεύθυνση του κυλίνδρου. Η χρήση λαμπτήρων UV-C διευκολύνει την πραγματοποίηση των αντιδράσεων πληγματικής δόμησης σε χημικές θερμοκρασίες. Η μείωση της θερμοκρασίας απόθεσης άλλωστε αποτελεί βασικό στόχο του πειράματος, καθώς αποτρέπει τη δημιουργία βαθιών σταθμών στο ενεργειακό διάκενο που συνήθως δυσχεραίνει τον έλεγχο του τύπου αγωγόμορτης με προσθήκη προσμίζεων [Triboulet and Perriere, 2003] και μειώνει την ευαισθησία του υμενίου στην αίσθηση υδρογόνου ή άλλων αναγωγικών αερίων. Αυτό δικαιολογείται και από το γεγονός ότι η υψηλή θερμοκρασία κατασκευής ή ανάπτυξης οδηγεί σε αύξηση του μεγέθους των κρυσταλλετίων (grain size), καθώς η ενέργεια που προσδίδεται λόγω θέρμανσης προκαλεί αναδιατάξεις των ατόμων του πλέγματος και οδηγεί σε αύξηση της κρυσταλλικότητας, άρα μείωση ενδοκρυσταλλικών άτομων και βελτίωση της στοιχειομετρίας. Έχει βρεθεί ότι μείωση του μεγέθους των κρυσταλλετίων οδηγεί σε αύξηση της ευαισθησίας στην ανίχνευση αερίων [Xu et al, 1991].

Οι λαμπτήρες θα ελέγχονται μέσω ηλεκτρονικού ballast και variae για απόλυτο έλεγχο της φωτεινότητας τους. Η διάταξη των ηλεκτρικών αντιστάσεων και των λαμπτήρων θα ελέγχεται μέσω διπλού ελεγκτή θερμοκρασίας PID. Η συνολική διάταξη θα τοποθετηθεί σε παραλληλεπίπεδο πλαίσιο από ελαφρύ αλουμίνιο για την προστασία των ερευνητών από την υπεριώδη ακτινοβολία των λαμπτήρων. Η διάταξη παροχής αερίων δε θα διαφέρει ουσιαστικά από την υπάρχουσα. Το σύστημα των αερίων εισόδου θα αποτελείται από δύο φιάλες που περιέχουν οξυγόνο και άξοντο υψηλής καθαρότητας. Το άξοντο χρησιμοποιείται ως φέρον αέριο και ως αέριο σάρωσης, επομένως, το σύστημα σωληνώσεων του αξώτου αποτελείται ουσιαστικά από δύο γραμμές. Οι παροχές των αερίων εισόδου στις διάφορες γραμμές ροής θα καθορίζονται μέσω ρυθμιστών ροής μάζας, κατάλληλων για το φέρον αέριο (άξοντο ή οξυγόνο).

2.2.2 Επιλογή πρόδρομου υλικού

Για την επιλογή του πρόδρομου υλικού εξετάστηκε η διεθνής βιβλιογραφία σχετικά με τους αντιδραστήρες XAA [Triboulet and Perriere, 2003]. Από ένα μεγάλο πλήθος συνδυασμών πρόδρομου υλικού – οξειδωτικού επιλέξθηκε η οργανομεταλλική ένωση δι-αθυλο-ψευδάργυρος (diethyl-zinc, DEZn), η οποία παραδίδεται σε μορφή σκόνης. Λόγω της εγγενούς βίας αντίδρασης του DEZn με το οξυγόνο, συνήθως χρησιμοποιείται κάποια αλκοόλη ως οξειδωτικό μέσο (στην περίπτωση μας αρχικά προτείνεται η χρήση αιθανόλης). Στην περίπτωση αυτή όμως μειώνεται δραματικά ο ρυθμός απόθεσης. Η χρήση αερίου οξυγόνου στην κατάλληλη ποσότητα πιθανότατα λύνει το πρόβλημα των βιέων αντιδράσεων, ενώ φαίνεται πως διευκολύνει την απόθεση ZnO τύπου p [Hazra and Basu 2005]. Αυτό με τη σειρά του εξηγείται με τη δημιουργία κενών θέσεων οξυγόνου στην επιφάνεια ή μέχρι λίγα ατομικά επίπεδα κάτω από αυτήν. Μετά την απόθεση και σε συνθήκες περιβάλλοντος, το οξυγόνο που απορροφάται χημικά στην επιφάνεια, αναπληρώνει κενές θέσεις της επιφάνειας. Ταυτόχρονα διαχείται στο σώμα του υλικού, αποκαθιστώντας
τις κενές θέσεις οξυγόνου και άρα η συγκέντρωση δοτών στο σώμα του ημιαγωγού μειώνεται. Η διάχυση οξυγόνου στο σώμα του ημιαγωγού ισοδυναμεί με διάχυση κενών ενδοκρυσταλλικών θέσεων προς την επιφάνεια. Στην περίπτωση του ZnO, η επίδραση κενών θέσεων οξυγόνου, ψευδοργίου και η παρουσία ενδοπλεγματικών ατόμων (p, χ). Η αλλαγή και Zn) φαίνεται να συνεισφέρουν και στο μηχανισμό αίσθησης. Η γενική αρχή που χρησιμοποιούν τα οξείδια τύπου n για αίσθηση αναγωγικών αερίων (A) είναι η αναγωγή του οξυγόνου του οξείδιου, είτε αυτό έχει απορροφηθεί χημικά, είτε πρόκειται για κρυσταλλικό οξυγόνο και συνοψίζεται στην ακόλουθη αντίδραση, όπου τα ηλεκτρόνια επιστρέφονται στη ζώνη αγωγιμότητας του οξειδίου: \(A^- + O^+ \leftrightarrow A^0 + e^- \). Για να γίνει περισσότερο κατανοητό το πώς επιδρά η στοιχειομετρική περίσσεια ή έλλειψη οξυγόνου στο θάλαμο απόθεσης στις ηλεκτρικές ιδιότητες πρέπει να αναφερθούν μερικά στοιχεία για το μηχανισμό αγωγιμότητας του ZnO.

Το ZnO χωρίς προσμίξεις (undoped) παρουσιάζει αγωγιμότητα τύπου n με άμεση ενεργειακό διάκενο (3,437 eV στους 2K και 3,37 eV στους 300K). Η προέλευση της αγωγιμότητας αυτής έχει γίνει αντικείμενο διαφωνιών σε παγκόσμιο ερευνητικό επίπεδο. Γενικά, έχει αποδεθεί στην ύπαρξη ενδοπλεγματικού Zn (Zn interstitials, Zn), στις κενές θέσεις O (oxygen vacancies) ή στην ενδοπλεγματική παρουσία υδρογόνου. Γεγονός είναι ότι οι καταστάσεις που οδηγούν στην ενδογενή αγωγιμότητα βρίσκονται 0,01 – 0,05 eV κάτω από τον πυθμένα της ζώνης αγωγιμότητας και είναι ανεξάρτητες της θερμοκρασίας. Αυτό είναι άμεσα το αποτέλεσμα συνολικής αντιστάθμισης πολλών παραγόντων που συνεισφέρουν στην αγωγιμότητα. Η δυσκολία παρασκευής ρ-τύπου ZnO φαίνεται να οφείλεται σε πολλούς συνδεδεμένους μεταξύ τους λόγους. Μια πιθανή αιτία είναι η αντιστάθμιση των εισαγόμενων καταστάσεων των αποδεκτών από βαθιές καταστάσεις αποδεκτών (deep level traps) που εισάγουν οι εγγενείς ατέλειες (κενές πλεγματικές θέσεις) ή προσμίξεις σε ενδοπλεγματικές θέσεις. Επίσης, έντονα φαινόμενα χαλάρωσης του πλέγματος οδηγούν στην ενέργεια των αποδεκτών βαθιά στο ενεργειακό διάκενο και βοηθούν στη δημιουργία κενών πλεγματικών θέσεων O που δρούν ως δότες. Εκτός των ατελείων του πλέγματος που πολλοί ερευνητές πιστεύουν ότι καθορίζουν την τύπο στην αγωγιμότητα του ZnO, τελευταία ιδιαίτερα βαρύτατα δίνεται στην επίδραση της ύπαρξης ενδοπλεγματικού υδρογόνου. Το υδρογόνο φαίνεται ότι επιδρά ως ρηχός δότης, καθώς μπορεί εύκολα να διαχωρίζει στο εσωτερικό του ZnO και να καταλάβει ενδοπλεγματικές θέσεις. Καθότι υδρογόνο και οξυγόνο εισάγονται και ανεπιθύμητα στα υμένια κατά την απόθεση, από την παρουσία υγρασίας στο θάλαμο, η χρήση αντλίας κρίνεται απαραίτητη.

Το πρόσφορο υλικό θα τοποθετηθεί σε δοχείο ατμών (bubbler) πλήρως διαλυμένο σε αιθανόλη και θα μεταφέρεται από την πηγή στο θάλαμο του αντιδραστήρα μέσω αερίου αξότου (φέρων αέριο). Η χρήση νερού ως διαλύτη δεν ενδείκνυται λόγω της εκρηκτικής φύσης των αντιδράσεων που προκαλούνται. Στο Σχήμα 2.12 φαίνεται η διάταξη του αντιδραστήρα.
Σχήμα 2.12 Διάταξη αντιδραστήρα ανάπτυξης υμενίων ZnO

2.3 Ανάπτυξη υμενίων Al

2.3.1 Πειραματική διάταξη

Τα πειράματα ανάπτυξης υμενίων αλουμινίου (Al) πραγματοποιήθηκαν στον κατακόρυφο εργαστηριακό αντιδραστήρα ψυχρών τοιχομάτων του Σχήματος 2.13 που βρίσκεται εγκατεστημένος στο CIRIMAT του CNRS-ENCIASET στην Τουλούζη της Γαλλίας. Ένα απλοποιημένο διάγραμμα της πειραματικής διάταξης απόθεσης απεικονίζεται στο Σχήμα 2.14. Ο αντιδραστήρας είναι εξοπλισμένος με ένα σύστημα καταιονισμού (showerhead) πάνω από ένα υπόβαθρο από ανοξείδωτο χάλυβα. Τα τοιχώματα του αντιδραστήρα είναι επίσης κατασκευασμένα από ανοξείδωτο χάλυβα. Το πρόδρομο υλικό (διμεθυλεθυλάμινο αλάνιο, DMEAA- dimethylethylamine alane) μεταφέρεται από την πηγή ατμών στο θάλαμο του αντιδραστήρα μέσω αζώτου που χρησιμοποιείται ως φέρον αέριο. Το άζωτο χρησιμοποιείται ταυτόχρονα και ως αέριο σάρωσης. Για τη θέρμανση του υποστρώματος χρησιμοποιείται πηνίο τοποθετημένο ακριβώς κάτω από την επιφάνεια του υποστρώματος. Η θερμοκρασία ελέγχεται μέσω ρυθμιστή με ένα θερμοστοιχείο τύπου K. Η συνολική πίεση του αντιδραστήρα ρυθμίζεται στα 10 Torr με τη βοήθεια μηχανικής αντλίας.

Στον Πίνακα 2.7 συνοψίζονται τυπικές συνθήκες λειτουργίας για την απόθεση αλουμινίου.
Σχήμα 2.13 Πειραματικό σύστημα απόθεσης υμείων αλουμινίου (CIRIMAT-CNRS, ENCIASET).

Σχήμα 2.14 Σχηματικό διάγραμμα της πειραματικής διάταξης στη διεργασία απόθεσης αλουμινίου. MFC είναι ρυθμιστές ροής μάζας (ροόμετρα).
Πίνακας 2.7 Τυπικές συνθήκες λειτουργίας για την απόθεση αλουμινίου

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Σύμβολο (μονάδες)</th>
<th>Τιμή αναφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πίεση λειτουργίας</td>
<td>P (Torr)</td>
<td>10</td>
</tr>
<tr>
<td>Παροχή N₂ φέροντος</td>
<td>F_e (sccm)</td>
<td>25</td>
</tr>
<tr>
<td>Παροχή N₂ σάρωσης</td>
<td>F_d (sccm)</td>
<td>305</td>
</tr>
<tr>
<td>Θερμοκρασία εισόδου</td>
<td>T_{in} (°C)</td>
<td>65</td>
</tr>
<tr>
<td>Θερμοκρασία υποστρώματος</td>
<td>T_{react} (°C)</td>
<td>200</td>
</tr>
<tr>
<td>Θερμοκρασία πηγής DMEAA</td>
<td>T_b (°C)</td>
<td>10</td>
</tr>
</tbody>
</table>

2.3.2 Μέτρηση ρυθμού ανάπτυξης υμενίων Al

Χρησιμοποιήθηκαν μονοκρυσταλλικά υποστρώματα πυριτίου διαστάσεων 5mm x 10mm στις θέσεις που φαίνονται στο Σχήμα 2.15 και ο υπολογισμός του ρυθμού ανάπτυξης υμενίων αλουμινίου έγινε με μέτρηση της αύξησης βάρους κάθε δείγματος. Τα αποτελέσματα για τις δύο θερμοκρασίες υποστρώματος που μελετήθηκαν συνοψίζονται στον Πίνακα 2.8.

Σχήμα 2.15 Σχηματική απεικόνιση των θέσεων των υποστρωμάτων πυριτίου στη διάρκεια των πειραμάτων απόθεσης αλουμινίου.

Πίνακας 2.8 Πειραματικός ρυθμός ανάπτυξης αλουμινίου (Å/min)

<table>
<thead>
<tr>
<th>Απόσταση (mm)</th>
<th>T_{react} = 200°C</th>
<th>T_{react} = 220°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>230</td>
<td>210</td>
</tr>
<tr>
<td>9</td>
<td>230</td>
<td>210</td>
</tr>
<tr>
<td>16</td>
<td>235</td>
<td>222</td>
</tr>
<tr>
<td>20</td>
<td>235</td>
<td>235</td>
</tr>
<tr>
<td>24</td>
<td>267</td>
<td>259</td>
</tr>
</tbody>
</table>
Προσομοίωση

Αντικείμενο της προσομοίωσης της χημικής απόθεσης από ατμό είναι η περιγραφή και μοντελοποίηση των μηχανισμών και φαινομένων που ελέγχουν τη διεργασία της απόθεσης, όπως η ροή του αερίου, η μεταφορά της ενέργειας και των συστατικών του μίγματος, καθώς και η χημεία της αέριας και της στερεής φάσης. Στόχος του σχολαστικού προσομοιωτή που αναπτύχθηκε στα πλαίσια του υποέργου ήταν η συσχέτιση της ποιότητας του παραγόμενου υμένιου, όπως, για παράδειγμα, ο συνολικός ρυθμός απόθεσης και η κατανομή αυτού πάνω στο υπόστρωμα, με τις λειτουργικές παραμέτρους της διεργασίας, όπως πίεση, θερμοκρασία, παροχή και συγκεντρώσεις του μίγματος τροφοδοσίας, αλλά και με τη γεωμετρία του αντιδραστήρα απόθεσης.

3.1 Βασικές αρχές της χημικής απόθεσης από ατμό

Η χημική απόθεση από ατμό χρησιμοποιεί ενώσεις από την αέρια φάση για την ανάπτυξη λεπτών επιστρώσεων/υμενίων πάνω σε θερμαινόμενα υποστρώματα. Τα συστατικά του προς απόθεση υμενίου, που προέρχονται από πρόδρομα υλικά, μεταφέρονται στην επιφάνεια απόθεσης, πάνω στην οποία το λεπτό υμένιο σχηματίζεται μέσω ετερογενών χημικών αντιδράσεων. Αδρανή αέρια, όπως N₂ και Ar, χρησιμοποιούνται συχνά για την ενίσχυση της μεταφοράς των πρόδρομων υλικών (στερεής ή υγρής φάσης) προς την επιφάνεια απόθεσης. Σε ορισμένες περιπτώσεις χρησιμοποιούνται κάποια ενεργά αέρια, όπως H₂, NH₃ ή O₂, τα οποία συμμετέχουν ταυτόχρονα, ως παράγοντες αναγωγής ή οξείδωσης, αντίστοιχα, στη χημεία της απόθεσης. Σε μια τυπική διεργασία ΧΑΑ, το μίγμα των αντιδρώντων και του φέροντος αερίου εισάγεται στο θάλαμο του αντιδραστήρα σε θερμοκρασία που δεν ξεπερνά συνήθως τους 150°C. Η θερμοκρασία του αερίου μίγματος αυξάνει καθώς πλησιάζει την επιφάνεια απόθεσης, η οποία θερμαίνεται είτε με ακτινοβολία είτε εξαιτίας του θερμαινόμενου υποδοχέα πάνω στο οποίο τοποθετείται το υπόστρωμα. Η ροή του μίγματος πάνω στην επιφάνεια απόθεσης οδηγεί στο σχηματισμό ενός οριακού στρώματος μέσα στο
ότι

Σχήμα

κύρια ροή αερίου

[1] μεταφορά

[2] αντίδραση

[3] διάχυση

[4] προσφόρηση

[5] διάχυση

[6] αντίδραση

[7] ενσωμάτωση

[8] εκρόφηση

[9] διάχυση

[10] μεταφορά

Ως θερμοκρασία και η συγκέντρωση των συστατικών του αερίου μίγματος μεταβάλλονται από των κατάστασης [Kodas and Hampden-Smith, 1994].

Σε κάποιες περιπτώσεις, ανάλογα με τις συνθήκες που επικρατούν στον αντιδραστήρα ΧΑΑ, τα αντιδρώντα συμμετέχουν σε αντιδράσεις αέριας φάσης οι οποίες οδηγούν στο σχηματισμό των προδρόμων συστατικών του στρώματος απόθεσης. Τα αντιδρώντα συστατικά μαζί με τα πρόδρομα συστατικά που σχηματίζονται διαχέονται μέσω του οριακού στρώματος και φθάνουν στην επιφάνεια του υποστρώματος. Εκεί διαχέονται επιφανειακά και προσφορώνται στα ενεργά σημεία της επιφάνειας. Επιφανειακές αντιδράσεις οδηγούν στο σχηματισμό των συστατικών του ομοιού τα οποία ενσωματώνονται στην επιφάνεια και σχηματίζουν το στρώμα απόθεσης, ενώ τα παραπροϊόντα εκροφώνται από την επιφάνεια, διαχείβονται μέσω του οριακού στρώματος και μεταφέρονται μακριά από την ζώνη απόθεσης προς την έξοδο του θαλάμου απόθεσης. Τα διαδοχικά στάδια που συμμετέχουν στη διεργασία χημικής απόθεσης από ατμό παρουσιάζονται στο Σχήμα 3.1.

Σχήμα 3.1 Διαδοχικά στάδια στη διεργασία της χημικής απόθεσης από ατμό

3.2 Ανάπτυξη προσομοιωτή διεργασιών ΧΑΑ

3.2.1 Εξεισόδες διατήρησης

Για τη μακροσκοπική ανάλυση της ροής στο εσωτερικό του αντιδραστήρα ΧΑΑ θεωρούμε ότι το ρεύμα συμπεριφέρεται ως συνεχείς μέσο. Επιπλέον, η ροή θεωρείται στροτή, ασυμπίεστη και μόνιμη. Οι εξεισόδες διατήρησης διαμορφώνονται ως εξής:
Εξίσωση διατήρησης της μάζας:

\[\nabla \cdot (\rho u) = 0 \quad (3.1) \]

Εξίσωσεις διατήρησης της ορμής:

\[\nabla \cdot (\rho uu) = -\nabla P + \rho g + \nabla \cdot \left[\mu (\nabla u + (\nabla u)^T) - \frac{2}{3} \mu (\nabla \cdot u) I \right] \quad (3.2) \]

Εξίσωση διατήρησης της ενέργειας:

\[C_p \nabla \cdot (\rho uT) = \nabla \cdot (\lambda \nabla T) - \sum_{i=1}^{N} \left(j_{\text{in}}^C + j_{\text{in}}^I \right) \frac{\nabla H_i}{M_i} - \sum_{i=1}^{N} \sum_{k=1}^{K} H_i \gamma_k R_k^g \quad (3.3) \]

Εξίσωση διατήρησης του συστατικού \(i \):

\[\nabla \cdot (\rho u \omega_i) = -\nabla \cdot (j_{\text{in}}^C + j_{\text{in}}^I) + M_i \sum_{k=1}^{K} \gamma_{ik} R_k^g \quad (3.4) \]

Σε ένα μίγμα \(N \)-συστατικών, υπάρχουν \(N-1 \) ανεξάρτητες εξισώσεις διατήρησης των συστατικών αφού το άθροισμα των κλασμάτων μάζας, \(\omega_i \), όλων των συστατικών πρέπει να ισούται με τη μονάδα:

\[\sum_{i=1}^{N} \omega_i = 1 \quad (3.5) \]

Αυτό πρακτικά σημαίνει ότι η εξίσωση (3.4) επιλύεται για \(N-1 \) συστατικά, ενώ το μοριακό κλάσμα του φέροντος αερίου υπολογίζεται από την εξίσωση (3.5).

Ο όρος \(j_{\text{in}}^C + j_{\text{in}}^I \) που εμφανίζεται στις εξισώσεις (3.3) και (3.4) αντιστοιχεί στη ροή μάζας του συστατικού \(i \), \(j_{\text{in}} \), σε ένα σύστημα \(N \)-συστατικών που βρίσκεται σε μη ισοθερμοκρασιακές συνθήκες. Σε ένα πολυσυστατικό μίγμα οι ροές διάχυσης που οφείλονται στις βαθμίδες συγκέντρωσης (\(j_{\text{in}} \)) περιγράφονται από τις εξισώσεις Stefan-Maxwell [Bird et al., 1960]:

\[j_{\text{in}}^C = -\rho D_{ij}^{\text{eff}} \nabla \omega_i - \rho \omega_i D_{ij}^{\text{eff}} \nabla (\ln M) + M_i D_{ij}^{\text{eff}} \sum_{j=1,j \neq i}^{N} \frac{j_{ij}^C}{M_j D_{ij}} \quad (3.6) \]

Ο ενεργός συντελεστής διάχυσης του συστατικού \(i \), \(D_{ij}^{\text{eff}} \), ορίζεται ως εξής:

\[D_{ij}^{\text{eff}} = \left(\sum_{j=1,j \neq i}^{N} \frac{M_j}{M_i} D_{ij} \right)^{-1} \quad (3.7) \]

Ο διαδικός συντελεστής διάχυσης, \(D_{ij} \), υπολογίζεται από την κινητική θεωρία των αερίων [Bird et al., 1960] με τη χρήση ενός παράγοντα διόρθωσης που προτάθηκε από τους Wilke και Lee [Reid et al., 1988].

Η ροή διάχυσης της μάζας λόγω των βαθμίδων της θερμοκρασίας, \(j_{\text{in}}^I \), υπολογίζεται από τη σχέση [Hirschfelder et al., 1954]:

\[\frac{\text{Δ}T}{\text{Δ}M} \]
\[j_i^T = -D_i^T \nabla (\ln T) \] \hspace{1cm} (3.8)

Για τον υπολογισμό των συντελεστών θερμικής διάχυσης χρησιμοποιείται η προσεγγιστική σχέση που προτάθηκε από τον Jones [Hirschfelder et al., 1954]:

\[D_i^T = \sum_{j=1}^{N} \rho \omega_{ij} D_{ij} k_{ij} \] \hspace{1cm} (3.9)

Οι παράγοντες θερμικής διάχυσης \(k_{ij} \) είναι απλές συναρτήσεις του μοριακού βάρους και των παραμέτρων Lennard-Jones.

Ο δεύτερος όρος στο δεξί μέλος της εξίσωσης (3.3) αντιστοιχεί στην ενέργεια που μεταφέρεται λόγω ενδοδιάχυσης του μίγματος, ενώ ο τελευταίος όρος συνδέεται με την παραγωγή και την κατανάλωση των συστατικών στις αντιδράσεις αέριας φάσης. Ο δεύτερος όρος στο δεξί μέλος της εξίσωσης (3.4) αντιστοιχεί στην παραγωγή ή την κατανάλωση του συστατικού 1 στις αντιδράσεις αέριας φάσης.

Εξαιτίας των μεγάλων βαθμίδων θερμοκρασίας που παρατηρούνται στο εσωτερικό του εργαστηριακού αντιδραστήρα ΧΑΑ (ιδιαίτερα στην περιοχή πάνω από το θερμαινόμενο υπόστρωμα), οι δυνάμεις άνωσης, \(\rho g \), δεν περιγράφονται από την προσέγγιση Boussinesq [Incropera and Dewitt, 1996] αλλά από την ακόλουθη σχέση:

\[\rho g = (\rho - \rho_o) g \] \hspace{1cm} (3.10)

Η πυκνότητα αναφοράς, \(\rho_o \), αντιστοιχεί στη θερμοκρασία αναφοράς, \(T_o \). Ο όρος \(\rho g \) που προκύπτει στις εξισώσεις (3.2) απορροφάται στον όρο της βαθμίδας της πίεσης.

3.2.2 Συνοριακές συνθήκες

Για την επίλυση του συστήματος των εξισώσεων (3.1) έως (3.4) απαιτείται η χρήση κατάλληλων συνοριακών συνθηκών για τις συνιστώσες της ταχύτητας, τη θερμοκρασία και τις συγκεντρώσεις των συστατικών του μίγματος.

Στερεά τοιχώματα: η συνθήκη της μη ολίσθησης και μη διείσδυσης χρησιμοποιείται στα στερεά τοιχώματα του αντιδραστήρα:

\[u = 0 \] \hspace{1cm} (3.11)

Η θερμοκρασία στα υψηλά τοιχώματα του εργαστηριακού αντιδραστήρα θεωρείται σταθερή και ίση με τιμή που είναι διαθέσιμη από πειραματικές μετρήσεις:

\[T = T_{wall} \] \hspace{1cm} (3.12)

Η συνολική ροή όλων των συστατικών του αερίου μίγματος θεωρείται μηδενική:
\[\mathbf{n} \cdot \left(\mathbf{j}_i^C + \mathbf{j}_i^T \right) = 0 \]

(3.13)

Επιφάνεια απόθεσης: Εξαιτίας της ενσωμάτωσης των ατόμων και της έκλυσης των αερίων προϊόντων, υπάρχει μια πεπερασμένη ταχύτητα κάθετη στην επιφάνεια απόθεσης. Συγκεκριμένα, ο σχηματισμός του λεπτού υμενίου στην επιφάνεια του θερμαινόμενου υποστρώματος πραγματοποιείται μέσω επιφανειακών αντιδράσεων της γενικής μορφής:

\[\gamma_{ik} G_1 + \gamma_{2k} G_2 + \ldots \rightarrow \gamma_{(n-1)k} G_{n-1} + \gamma_{nk} G_n + \ldots + \sigma_{ik} S_1 + \sigma_{2k} S_2 + \ldots \]

(3.14)

Εξαιτίας αυτών των επιφανειακών αντιδράσεων, υπάρχει ένας καθαρός ρυθμός παραγωγής ή κατανάλωσης της μάζας του συστατικού \(i \), \(\text{MF}_i \), στην επιφάνεια απόθεσης:

\[\text{MF}_i = M_i \sum_{k=1}^{\text{KS}} \gamma_{ik} R_k^i \]

(3.15)

Η συνολική καθαρή ροή μάζας στην επιφάνεια απόθεσης, \(\text{MF} \), υπολογίζεται από τη σχέση:

\[\text{MF} = \sum_{i=1}^{\text{N}} \sum_{k=1}^{\text{KS}} M_i \gamma_{ik} R_k^i \]

(3.16)

Η ροή μάζας δημιουργεί μια συνιστώσα ταχύτητας, \(u_s \), κάθετη στην επιφάνεια απόθεσης:

\[u_s = \frac{1}{\rho} \sum_{i=1}^{\text{N}} \sum_{k=1}^{\text{KS}} M_i \gamma_{ik} R_k^i \]

(3.17)

Για τα αέρια συστατικά που συμμετέχουν στις επιφανειακές αντιδράσεις, η καθαρή ροή στην επιφάνεια απόθεσης ισούται συστηματικά με τον καθαρό ρυθμό παραγωγής ή κατανάλωσης:

\[\mathbf{n} \cdot \left(\rho u_{\text{inlet}} + \mathbf{j}_i^C + \mathbf{j}_i^T \right) = M_i \sum_{k=1}^{\text{KS}} \gamma_{ik} R_k^i \]

(3.18)

Ισοθερμοκρασιακή συνθήκη χρησιμοποιείται για την εξίσωση διατήρησης της ενέργειας στην επιφάνεια απόθεσης, η οποία θερμαίνεται με ακτινοβολία μέσω ηλεκτρικών λαμπτήρων:

\[T = T_{\text{wafer}} \]

(3.19)

Είσοδος: στην είσοδο καθορίζονται οι τιμές για όλες τις μεταβλητές επίλυσης:

\[\mathbf{u} = \mathbf{u}_{\text{inlet}} \]

(3.20)

\[T = T_{\text{inlet}} \]

(3.21)

\[\omega_i = \omega_{i,\text{inlet}} \]

(3.22)
3.2.3 Θερμοφυσικές ιδιότητες των συστατικών και του μίγματος

Η επίλυση της εξίσωσης διατήρησης της ενέργειας (εξίσωση 3.3) απαιτεί τον υπολογισμό των θερμοφυσικών ιδιοτήτων των συστατικών και του μίγματος. Για τον υπολογισμό της ειδικής θερμότητας, \(C_{pi} \), και της ενθαλπίας σχηματισμού, \(H_{i} \), των συστατικών χρησιμοποιούνται πολυωνυμικές συναρτήσεις της θερμοκρασίας, σύμφωνα με τη βάση δεδομένων CHEMKIN [Kee et al, 1987]:

\[
\frac{C_{pi}(T)}{R} = \alpha_{i1} + \alpha_{i2} T + \alpha_{i3} T^2 + \alpha_{i4} T^3 + \alpha_{i5} T^4
\]

(3.26)

\[
\frac{H_{i}(T)}{RT} = \alpha_{i1} + \frac{\alpha_{i2}}{2} T + \frac{\alpha_{i3}}{3} T^2 + \frac{\alpha_{i4}}{4} T^3 + \frac{\alpha_{i5}}{5} T^4 + \frac{\alpha_{i6}}{T}
\]

(3.27)

Οι πολυωνυμικοί συντελεστές λαμβάνονται από διαθέσιμα βιβλιογραφικά δεδομένα.

Η ειδική θερμότητα του μίγματος, \(C_p \), υπολογίζεται από τη σχέση:

\[
C_p = \sum_{i=1}^{N} \omega_i C_{pi}
\]

(3.28)

3.2.4 Ιδιότητες μεταφοράς των συστατικών και του μίγματος

Η πυκνότητα του μίγματος, \(\rho \), υπολογίζεται από το νόμο των τελείων αερίων:

\[
\rho = \frac{PM}{RT}
\]

(3.29)

Το μοριακό βάρος του αερίου μίγματος, \(M \), υπολογίζεται μέσω της εξίσωσης:

\[
M = \sum_{i=1}^{N} \omega_i M_i
\]

(3.30)

Η συσχέτιση μοριακού κλάσματος \(x_i \) και κλάσματος μάζας \(\omega_i \) περιγράφεται από τη σχέση:

\[
x_i = \frac{\omega_i M}{M_i}
\]

(3.31)
Το δυναμικό ιξώδες του συστατικού i, μ_i, μπορεί να υπολογισθεί από τη σχέση [Bird et al., 1960]:

$$\mu_i = 2.6693 \cdot 10^{-5} \frac{\sqrt{M_i T}}{\sigma_i^3 \Omega_{\mu,i}}$$ \hspace{1cm} (3.32)$$

Η αδιάστατη παράμετρος (collision integral), $\Omega_{\mu,i}$, υπολογίζεται ανάλογα με την παράμετρο $\Omega_{D,ij}$ μέσω της εμπειρικής σχέσης [Neufeld et al., 1972]:

$$\Omega_{\mu,j} = \frac{A}{(T^*)^\mu} + \frac{C}{\exp(DT^*)} + \frac{E}{\exp(FT^*)} + \frac{G}{\exp(HT^*)}$$ \hspace{1cm} (3.33)$$

όπου, $A = 1.16145$, $B = 0.14874$, $C = 0.52487$, $D = 0.77320$, $E = 2.16178$, $F = 2.43787$, $G = 0.00000$, $H = 0.00000$

Η θερμική αγωγιμότητα του συστατικού i, λ_i, για μονοατομικά αέρια υπολογίζεται από τη σχέση [Bird et al., 1960]:

$$\lambda_i = \frac{15}{4} \frac{R}{M_i} \mu_i$$ \hspace{1cm} (3.34)$$

ενώ για πολυατομικά αέρια χρησιμοποιείται η διόρθωση Eucken [Reid et al., 1988]:

$$\lambda_i = \left(\frac{15}{4} + 1.32 \left(\frac{C_p}{R} - \frac{5}{2}\right)\right) \frac{R}{M_i} \mu_i$$ \hspace{1cm} (3.35)$$

Για τον υπολογισμό του δυναμικού ιξώδες του μίγματος, μ, χρησιμοποιείται η εμπειρική σχέση που προτάθηκε από τον Wilke [Reid et al., 1988]:

$$\mu = \sum_{i=1}^{N} \left(\frac{x_i \mu_i}{\sum_j x_j \Phi_{ij}}\right)$$ \hspace{1cm} (3.36)$$

όπου, ο παράγοντας συσχέτισης Φ_{ij} υπολογίζεται από τη σχέση:

$$\Phi_{ij} = \frac{1}{\sqrt{8}} \left(1 + \frac{M_i}{M_j}\right)^{-1/2} \left(1 + \left(\frac{\mu_i}{\mu_j}\right)^{1/2} \left(\frac{M_j}{M_i}\right)^{1/4}\right)^2$$ \hspace{1cm} (3.37)$$

Η θερμική αγωγιμότητα του μίγματος, λ, υπολογίζεται από ανάλογη εμπειρική σχέση.
3.2.5 Συνολικός ρυθμός ανάπτυξης

Στα πειράματα που πραγματοποιούνται στον εργαστηριακό αντιδραστήρα χημικής απόθεσης από ατμό, οι μετρήσεις που προκύπτουν και οι οποίες θα πρέπει να συγκρίνονται με τις προβλέψεις του προσωπομοντεορισμού κυρίως στην κατανομή του πάχους του παραγόμενου υμενίου κατά μήκος του δισκίου αλλά και στο μέσο ρυθμό απόθεσης πάνω σε αυτό. Για το λόγο αυτό, εκτός από τις κατανομές της ταχύτητας, της θερμοκρασίας και της συγκέντρωσης των συστατικών του μίγματος, το μοντέλο προσωπομοίωσης της λειτουργίας του αντιδραστήρα ΧΑΑ που αναπτύχθηκε υπολογίζει το ρυθμό απόθεσης πάνω στην επιφάνεια του υποστρώματος. Για τον υπολογισμό του θεωρούμε ένα μηχανισμό ο οποίος στηρίζεται στα διαδοχικά στάδια της διάχυσης των αερίων συστατικών του αντιδρόντος μίγματος προς την επιφάνεια απόθεσης και της επιφανειακής αντιδράσης που οδηγεί στο σχηματισμό του λεπτού υμενίου. Επομένως, για την επιφανειακή αντιδράση k, ο ρυθμός απόθεσης, \(R_k \), πάνω στο θερμαινόμενο υπόστρωμα καθορίζεται από το πιο αργό στάδιο μέσω της σχέσης:

\[
\frac{1}{R_k^d} = \frac{1}{R_k^s} + \sum_{i=1}^{NR} \frac{\gamma_{ik}}{R_{Di}}
\]

(3.38)

Ο ρυθμός της επιφανειακής αντιδράσης, \(R_k^s \), υπολογίζεται μέσω της εξίσωσης που περιγράφει την κινητική της αντιδράσης, ενώ για τον υπολογισμό της μέγιστης ροής διάχυσης του συστατικού \(i \), \(R_{Di} \), στην επιφάνεια απόθεσης χρησιμοποιείται η σχέση:

\[
R_{Di} = \frac{1}{M_i} \left(\frac{\rho D_i \omega_i}{d_{1S}} \right)
\]

(3.39)

Ο δείκτης 1 δηλώνει τις τιμές των μεγεθών στο πρώτο πλεγματικό σημείο από την επιφάνεια απόθεσης. Η απόσταση \(d_{1S} \) ισούται με την απόσταση του σημείου αυτού από τη στερεή επιφάνεια. Ο ενεργός συντελεστής του αντιδρόντος συστατικού \(i \), \(D_i \), στο αέριο μίγμα υπολογίζεται από τη σχέση:

\[
D_i = \frac{J_i^c}{\rho V \omega_i}
\]

(3.40)

Η σχέση (3.40) βασίζεται στο γεγονός ότι η ροή διάχυσης προς την επιφάνεια απόθεσης παίρνει τη μέγιστη τιμή της όταν η συγκέντρωση του συστατικού \(i \), \(\omega_i \), γίνεται μηδενική στην επιφάνεια απόθεσης. Επειδή \(D_i \to 0 \) για \(\omega_i \to 0 \) (εξίσωση 2.9), η εξίσωση (3.39) περιλαμβάνει μόνο τον όρο της συνήθους διάχυσης και όχι την επίδραση της θερμικής διάχυσης.

Για τη μετατροπή του ρυθμού απόθεσης, \(R_k^d \) [mol/m\(^2\)s] στο συνολικό ρυθμό ανάπτυξης πάνω στο δισκίο απόθεσης, \(G \) [μμ/μ], που μετράται πειραματικά, χρησιμοποιείται η σχέση:
\[G = 36 \cdot 10^8 \cdot \frac{M_s}{\rho_s} \sum_{k=1}^{KS} \sigma_{sk} R_k^d \]

(3.41)

Η ανομοιομορφία του πάχους του υμενίου κατά μήκος του δισκίου απόθεσης, \(\Delta G \), εκτιμάται μέσω του μέγιστου, ελάχιστου και μέσου ρυθμού ανάπτυξης του υμενίου από τη σχέση:

\[\Delta G = \frac{G_{\text{max}} - G_{\text{min}}}{G_{\text{ave}}} \cdot 100\% \]

(3.42)

3.2.6 Αριθμητική επίλυση

Το σύστημα των μερικών διαφορικών εξισώσεων (εξισώσεις 3.1-3.4) σε συνδυασμό με τις συνοριακές συνθήκες διακριτοποιείται με τη μέθοδο των πεπερασμένων όγκων ελέγχου [Patankar, 1980]. Ο κώδικας υπολογιστικής ρευστοδυναμικής PHOENICS [CHAM, 2004] χρησιμοποιείται για την εκτέλεση των υπολογισμών. Για την περιγραφή της πολύπλοκης γεωμετρίας του οριζόντιου αντιδραστήρα χημικής απόθεσης από ατμό αναπτύσσεται τριδιάστατο πλέγμα πολλαπλών υποχωρίων σε καμπυλόγραμμες συντεταγμένες (Σχήμα 3.2). Με την επιλογή αυτή επιτυγχάνεται ομαλή μετάβαση από τη γεωμετρία της εισόδου (Σχήμα 3.2α) στη γεωμετρία της περιοχής του δισκίου απόθεσης (Σχήμα 3.2β) και τελικά στη γεωμετρία της εξόδου (Σχήμα 3.2γ). Εξιατία της ύπαρξης επιπέδου συμμετρίας (επίπεδο y-z), για τη διακριτοποίηση του χωρίου χρησιμοποιούνται τέσσερα υπολογιστικά υποχωρία τα οποία αντιστοιχούν ουσιαστικά στο μισό χωρίο. Για την επίλυση του συστήματος των μερικών διαφορικών εξισώσεων σε συγκεκριμένες τιμές παραμέτρων απαιτούνται 2h CPU σε ένα Pentium 4/2.4 GHz.

![Σχήμα 3.2](image.png)

Σχήμα 3.2 Διακριτοποίηση του πεδίου στην εγκάρσια διεύθυνση (επίπεδο x-y)
(a) είσοδος (β) περιοχή υποστρώματος και (γ) έξοδος
3.2.7 Ενθεικτικά αποτελέσματα προσομοιωτή

Τα Σχήματα 3.3α και β απεικονίζουν, στις συνθήκες αναφοράς (βλ. Πίνακα 2.2), τις ισοθερμοκρασιακές καμπύλες κατά μήκος της εγκάρσιας και της αξονικής κεντρικής γραμμής του υποστρώματος, αντίστοιχα. Η θερμοκρασία του αερίου μίγματος μειώνεται από το θερμαίνομενο υπόστρωμα προς τα ψυχρά τοιχώματα του αντιδραστήρα. Η αλληλεπίδραση της μεταφοράς θερμότητας και μάζας στην αξονική διεύθυνση απεικονίζεται καθαρά στην κατανομή των ισοθερμοκρασιακών καμπυλών στην περιοχή πάνω από το υπόστρωμα.

Σχήμα 3.3 Ισοθερμοκρασιακές καμπύλες κατά μήκος της (α) εγκάρσιας και της (β) αξονικής κεντρικής γραμμής του υποστρώματος, στις συνθήκες αναφοράς.

Η κατανομή των συστατικών του αερίου μίγματος, στις συνθήκες αναφοράς, κατά μήκος της εγκάρσιας και της αξονικής κεντρικής γραμμής του υποστρώματος, παρουσιάζεται στα Σχήματα 3.4α και β, αντίστοιχα. Παρατηρούμε ότι η κατανομή του χλωρίου που είναι το παραπροϊόν της επιφανειακής αντίδρασης απόθεσης παρουσιάζει μεγάλη ανομοιομορφία και στις δύο διεύθυνσεις. Τα αποτελέσματα αυτά συνδέονται άμεσα με το σχεδιασμό της εισόδου του αντιδραστήρα αφού κάθε συστατικό του αντιδρόντος μίγματος εισέρχεται στον αντιδραστήρα μέσω διαφορετικής οπής εισόδου (βλ. Σχήμα 2.2) και με διαφορετική παροχή, με αποτέλεσμα την ανεπαρκή ανάμειξη των αντιδρόντων πριν φθάσουν στην εισφάνεια.

Σχήμα 3.4 Κανονικοποιημένα κλάσματα μάζας των συστατικών κατά μήκος της (α) εγκάρσιας και της (β) αξονικής κεντρικής γραμμής του υποστρώματος, στις συνθήκες αναφοράς.
3.3 Ανάπτυξη υμενίων SnO₂

3.3.1 Ανάλυση πειραματικών δεδομένων

Τα πειράματα απόθεσης οξειδίου του κασσιτέρου (SnO₂) πραγματοποιήθηκαν από τη συνεργαζόμενη ομάδα της Σχολής Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ του Ε.Μ.Π. Η πειραματική διάταξη που περιγράφηκε στη Κεφάλαιο 2 της παρούσας εκθέσης χρησιμοποιήθηκε για τη μελέτη της εξάρτησης του ρυθμού ανάπτυξης των υμενίων SnO₂ από τις ακόλουθες λειτουργικές παραμέτρους:

- θερμοκρασία υποστρώματος
- παροχή αζώτου σάρωσης
- παροχή οξυγόνου
- παροχή πρόδρομου υλικού

Για λόγους πληρότητας, στον Πίνακα 3.1 που ακολουθεί συνοψίζεται το εύρος των λειτουργικών παραμέτρων που μελετήθηκαν πειραματικά. Εξαιτίας αδυναμίας προκαθορισμού της θερμοκρασίας στο χώρο της πηγής ατμόν SnCl₄, η πηγή ατμών είναι εκτεθειμένη στη θερμοκρασία του πειραματικού θαλάμου, με αποτέλεσμα η παροχή του SnCl₄ να μεταβάλλεται σε κάθε πείραμα. Για το λόγο αυτό σε κάθε πείραμα απόθεσης αναφέρεται και η θερμοκρασία της πηγής ατμών SnCl₄.

Πίνακας 3.1 Παράμετροι στην απόθεση οξειδίου του κασσιτέρου

<table>
<thead>
<tr>
<th>Παράμετρος</th>
<th>Μονάδες</th>
<th>Εύρος λειτουργίας</th>
<th>Τιμή αναφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πίεση λειτουργίας P</td>
<td>atm</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Παροχή N₂ φέροντος F_c</td>
<td>ml/min</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Παροχή N₂ σάρωσης F_d</td>
<td>ml/min</td>
<td>200 - 400</td>
<td>400</td>
</tr>
<tr>
<td>Παροχή O₂ F_o</td>
<td>ml/min</td>
<td>120 - 210</td>
<td>150</td>
</tr>
<tr>
<td>Θερμοκρασία υποστρώματος T_w</td>
<td>°C</td>
<td>390 - 510</td>
<td>470</td>
</tr>
<tr>
<td>Θερμοκρασία πηγής SnCl₄ T_b</td>
<td>°C</td>
<td>22.80 – 30.14</td>
<td>-</td>
</tr>
<tr>
<td>Χρόνος απόθεσης T</td>
<td>min</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1 στους 20°C και 1bar

Στον Πίνακα 3.2 συνοψίζονται οι πειραματικές συνθήκες και οι μετρούμενοι μέσοι ρυθμοί ανάπτυξης στην αξονική διεύθυνση (GRₓ), στην εγκάρσια διεύθυνση (GRᵧ) καθώς και ο μέσος ρυθμός ανάπτυξης των υμενίων SnO₂ (GR).
Πίνακας 3.2 Πειραματικές συνθήκες λειτουργίας για την απόθεση οξειδίου του κασσιτέρου

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>T_b ($^\circ$C)</th>
<th>T_w ($^\circ$C)</th>
<th>F_d (ml/min)1</th>
<th>F_o (ml/min)1</th>
<th>F_c (ml/min)1</th>
<th>GR_z (μm/h)</th>
<th>GR_x (μm/h)</th>
<th>GR (μm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π1</td>
<td>24.40</td>
<td>390</td>
<td>400</td>
<td>150</td>
<td>200</td>
<td>5.9861</td>
<td>5.8575</td>
<td>5.9218</td>
</tr>
<tr>
<td>Π2</td>
<td>23.20</td>
<td>410</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8538</td>
<td>6.0180</td>
<td>5.9359</td>
</tr>
<tr>
<td>Π3</td>
<td>26.12</td>
<td>430</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8325</td>
<td>6.2573</td>
<td>6.0449</td>
</tr>
<tr>
<td>Π4</td>
<td>30.14</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.1103</td>
<td>6.2468</td>
<td>6.1785</td>
</tr>
<tr>
<td>Π5</td>
<td>28.28</td>
<td>470</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0900</td>
<td>6.0870</td>
<td>6.0885</td>
</tr>
<tr>
<td>Π6</td>
<td>28.86</td>
<td>490</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0943</td>
<td>5.9828</td>
<td>6.0385</td>
</tr>
<tr>
<td>Π7</td>
<td>31.04</td>
<td>510</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8939</td>
<td>6.1763</td>
<td>6.0350</td>
</tr>
<tr>
<td>Π8</td>
<td>26.62</td>
<td>470</td>
<td>350</td>
<td>-</td>
<td>-</td>
<td>5.9694</td>
<td>6.1680</td>
<td>6.0687</td>
</tr>
<tr>
<td>Π9</td>
<td>23.32</td>
<td>-</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>5.9964</td>
<td>6.0162</td>
<td>6.0063</td>
</tr>
<tr>
<td>Π10</td>
<td>24.82</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>5.7240</td>
<td>5.8410</td>
<td>5.7825</td>
</tr>
<tr>
<td>Π11</td>
<td>25.60</td>
<td>-</td>
<td>400</td>
<td>120</td>
<td>-</td>
<td>62232</td>
<td>6.0804</td>
<td>6.1518</td>
</tr>
<tr>
<td>Π12</td>
<td>22.80</td>
<td>-</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>5.9688</td>
<td>6.0426</td>
<td>6.0057</td>
</tr>
</tbody>
</table>

1 Συνθήκες: 20°C, 1 bar

3.3.2 Υπολογισμός σύστασης εισόδου αντιδρόντος μίγματος

Η ποσότητα του πρόδρομου υλικού που εισέρχεται στον αντιδραστήρα ελέγχεται μέσω μέτρησης (i) της θερμοκρασίας στο χώρο της πηγής, T_b, (ii) της παροχής του φέροντος αερίου, F_c και (iii) της πίεσης στο χώρο πηγής εξαιτίας του φέροντος αερίου, P_B. Συγκεκριμένα, η παροχή του πρόδρομου υλικού, F_p, και επομένως, η σύσταση του αντιδρόντος μίγματος υπολογίζεται μέσω της σχέσης [Love et al., 1993]:

$$F_p = \frac{P_v}{P_B - P_v} F_c$$ \hspace{1cm} (3.43)
Σύμφωνα με την πειραματική διαδικασία, η παροχή του φέροντος αερίου μετράται μέσω ρυθμιστή ροής, ενώ για τη μέτρηση της πίεσης στο χώρο πηγής χρησιμοποιείται κατάλληλο μανόμετρο. Το υγρό πρόδρομο υλικό εξατμίζεται σε θερμοκρασία περιβάλλοντος και εισάγεται μαζί με το φέρον αέριο στο θάλαμο του αντιδραστήρα. Η τάση ατμών του πρόδρομου υλικού, \(P_v \), υπολογίζεται από μετρήσεις της θερμοκρασίας του δοχείου πηγής, \(T_B \), μέσω των δεδομένων του Πίνακα 3.3 [Kodas and Hampden-Smith, 1994].

Το μοριακό κλάσμα του πρόδρομου υλικού στην είσοδο του αντιδραστήρα υπολογίζεται από τη σχέση:

\[
x_{p,\text{inlet}} = \frac{F_p}{F_c + F_d + F_p} \tag{3.44}
\]

Πίνακας 3.3 Δεδομένα τάσης ατμών οξειδίου του κασσιτέρου [Kodas and Hampden-Smith, 1994]

<table>
<thead>
<tr>
<th>Θερμοκρασία (°C)</th>
<th>Τάση ατμών (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-22.7</td>
<td>1</td>
</tr>
<tr>
<td>10.0</td>
<td>10</td>
</tr>
<tr>
<td>35.2</td>
<td>40</td>
</tr>
<tr>
<td>54.7</td>
<td>100</td>
</tr>
<tr>
<td>92.1</td>
<td>400</td>
</tr>
<tr>
<td>113.0</td>
<td>760</td>
</tr>
</tbody>
</table>

Μία από τις κυριότερες παραδοχές στην εξίσωση (2.1) είναι ότι στο εσωτερικό του δοχείου πηγής οι ατμοί του SnCl\(_4\) βρίσκονται σε ισορροπία με την υγρή φάση. Η υπόθεση αυτή εξαρτάται κυρίως από την παροχή του φέροντος αερίου και για να αποφευχθούν επιπλέον λόγω μετατόπισης της ισορροπίας άλλα πειράματα διεξήχθησαν σε σταθερή παροχή φέροντος αερίου. Επομένως, η παροχή του πρόδρομου υλικού καθορίζεται με απλή ρύθμιση της θερμοκρασίας στο δοχείο πηγής ατμών.

3.4 Κινητική απόθεση SnO\(_2\)

3.4.1 Βιβλιογραφική ανασκόπηση

Η συγκεκριμένη πειραματική μελέτη περιλαμβάνει την απόθεση SnO2 από τρία διαφορετικά μίγματα πρόδρομον υλικών σε οριζόντιο αντιδραστήρα ψυχρών τοιχωμάτων σε συνθήκες ατμοσφαιρικής πίεσης και θερμοκρασίες στην περιοχή 675°–940°C. Η πειραματική διερεύνηση της επεργενούς αντίδρασης απόθεσης SnO2 από οξείδωση SnCl4 έδειξε ότι ο ρυθμός απόθεσης εξαρτάται ισχυρά όχι μόνο από τη συγκέντρωση του SnCl4 αλλά και από τη συγκέντρωση του O2. Συγκεκριμένα, ο ρυθμός απόθεσης ανεξάρτητος από την αύξηση της συγκέντρωσης των αντιδράντων συστατικών, ενώ φαίνεται να εξαρτάται μόνο από τη συγκέντρωση του SnCl4 σε υψηλότερες συγκεκριμένες συνθήκες του O2. Στις εκφράσεις που προτάθηκαν από τον Ghoshtagore, ο ρυθμός της αντίδρασης βρέθηκε να εστίαζε με 0.26 ± 0.01 ως προς το SnCl4 για όλες τις συγκεκριμένες συνθήκες του O2 και με 0.5 ως προς το O2 σε χαμηλότερες συγκεκριμένες συνθήκες. Επιπλέον, ο Ghoshtagore κατέληξε στο συμπέρασμα ότι η προσρόφηση των αντιδράντων στην επιφάνεια απόθεσης ακολουθεί ουσιαστικά ένα μηχανισμό τύπου Eley-Rideal. Περισσότερα για το μηχανισμό τύπου Eley-Rideal και τη γενικότερη κινητική τύπου Langmuir-Hinshelwood θα αναφερθούν στη συνέχεια.

Πίνακας 3.4 Κινητικές μελέτες ανάπτυξης μεμβράνων SnO2 [Ghoshtagore, 1978]

<table>
<thead>
<tr>
<th>Πρόδρομο υλικό</th>
<th>Επιφανειακή αντίδραση απόθεσης</th>
<th>Κινητική εξίσωση</th>
<th>Σημείωση</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnCl4</td>
<td>SnCl4 + O2 → SnO2 + 2 · Cl2</td>
<td>R ∝ (P O2)½ (P SnCl4)0.26±0.01</td>
<td>χαμηλές P O2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R ∝ (P SnCl4)0.26±0.01</td>
<td>χαμηλές P SnCl4</td>
</tr>
<tr>
<td>SnCl4</td>
<td>SnCl4 + 2 · H2O → SnO2 + 4 · HCl</td>
<td>R ∝ (P H2O) (P SnCl4)</td>
<td>χαμηλές P H2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R ∝ (P SnCl4)</td>
<td>υψηλές P SnCl4</td>
</tr>
<tr>
<td>Sn(CH3)4</td>
<td>(CH3)4Sn + 8 · O2 → SnO2 + 6 · H2O + 4 · CO2</td>
<td>R ∝ (P O2)½ (P TMT)</td>
<td>χαμηλές P O2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R ∝ (P TMT)</td>
<td>υψηλές P TMT</td>
</tr>
</tbody>
</table>

3.4.2 Κινητικοί μηχανισμοί "μιας κατεύθυνσης"

Το υμένιο οξειδίου του κασσιτέρου δημιουργείται πάνω στο υπόστρωμα πυριτίου μέσω της αντίδρασης οξείδωσης τετραχλωριούχου κασσιτέρου:

SnCl4 + O2 → SnO2 + 2 · Cl2 (3.45)
Η ετερογενής αυτή αντίδραση αντιπροσωπεύει τη συνολική διεργασία απόθεσης η οποία είναι ιδιαίτερα πολύπλοκη και περιλαμβάνει επιμέρους στάδια προσρόφησης, επιφανειακής αντίδρασης και εκρόφησης, όπως παρουσιάζεται στο Σχήμα 3.5. Τα στάδια αυτά λαμβάνουν χώρα ταυτόχρονα ή/και διαδοχικά και μαζί με τα φαινόμενα μεταφοράς στο εσωτερικό του αντιδραστήρα επηρεάζουν σημαντικά το πάχος και τη χημική σύσταση των παραγόμενων υμενίων.

Σχήμα 3.5 Ηλεκτρικό ανάλογο ετερογενών αντιδράσεων

Για την περιγραφή του ετερογενούς μηχανισμού απόθεσης διερευνώνται μοντέλα "μιας κατεύθυνσης" (monorhoic), τα οποία έχουν εφαρμοσθεί σε αρκετά συστήματα χημικής απόθεσης από ατμό [ter Heerdt et al, 2001]. Οι μηχανισμοί αυτοί χρησιμοποιούνται εναλλακτικά των ευρέως χρησιμοποιούμενων μηχανισμών τύπου Langmuir-Hinshelwood και βασίζονται στις ακόλουθες παραδοχές:

- Το υμένιο απόθεσης σχηματίζεται από επιφανειακές αντιδράσεις μεταξύ αερίων και προσροφημένων στην επιφάνεια χημικών ειδών. Τέτοιες αντιδράσεις είναι χαρακτηριστικές των μηχανισμών τύπου Eley-Rideal, που ανήκουν στη γενικότερη κινητική τύπου Langmuir-Hinshelwood [Fogler, 1992].
- Δε λαμβάνουν χώρα αντιδράσεις στην αέρια φάση.
- Οι αντιδράσεις είναι μη αντιστρεπτές. Οι αντίστροφες αντιδράσεις, εφόσον θεωρούνται σημαντικές, διατυπώνονται ως έξεχωριστές αντιδράσεις.
- Τα προσροφημένα στην επιφάνεια χημικά είδη δεν αλληλεπιδρούν μεταξύ τους, ούτε διαχέονται πάνω στην επιφάνεια.
- Θεωρείται ότι το υπόστρωμα του πυριτίου έχει συγκεκριμένο αριθμό ενεργών κέντρων, πάνω στα οποία είναι δυνατή η προσρόφηση των χημικών ειδών. Η προσρόφηση περιορίζεται σε ένα μόνο στρώμα απόθεσης.

\[R_a \quad R_s \quad R_{ds} \]

Επιφανειακή αντίδραση

Εκρόφηση

Προσρόφηση

\[I \quad E \]
Το βασικό πλεονέκτημα των μοντέλων “μιας κατεύθυνσης” είναι η δυνατότητα να λαμβάνουν υπόψη παράλληλες αντιδράσεις σε αντίθεση με τα μοντέλα τύπου Langmuir-Hinshelwood τα οποία στηρίζονται στην ύπαρξη ρυθμο-ρυθμιστικών βημάτων του κινητικού μηχανισμού.

Με βάση αυτές τις παραδοχές, διατυπώνονται τέσσερις υποψήφιες κινητικές αντιδράσεις "μιας κατεύθυνσης", οι οποίες περιλαμβάνουν διαφορετικό αριθμό στοιχειωδών χημικών αντιδράσεων και οι οποίες συνοψίζονται στον Πίνακα 3.5.

Πίνακας 3.5 Κινητικοί μηχανισμοί απόθεσης SnO2

<table>
<thead>
<tr>
<th>Μηχανισμός Α</th>
<th>RS1. SnCl4(g) + S → SnCl2(a) + Cl2(g) 1</th>
<th>προσρόφηση SnCl4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RS2. SnCl2(a) + O2(g) → SnO2(s) + Cl2(g) + S</td>
<td>αντίδραση</td>
</tr>
<tr>
<td>Μηχανισμός Β</td>
<td>RS3. O2(g) + 2·S → 2·O(a)</td>
<td>προσρόφηση O2</td>
</tr>
<tr>
<td></td>
<td>RS4. SnCl4(g) + 2·O(a) → SnO2(s) + 2·Cl2(g) + 2·S</td>
<td>αντίδραση</td>
</tr>
<tr>
<td>Μηχανισμός Γ</td>
<td>RS5. SnCl4(g) + 2·S → SnCl2(a) + Cl2(a)</td>
<td>προσρόφηση SnCl4</td>
</tr>
<tr>
<td></td>
<td>RS6. SnCl2(a) + O2(g) → SnO2(s) + Cl2(a)</td>
<td>αντίδραση</td>
</tr>
<tr>
<td></td>
<td>RS7. Cl2(a) → Cl2(g) + S</td>
<td>εκρόφηση Cl2</td>
</tr>
<tr>
<td>Μηχανισμός Δ</td>
<td>RS8. O2(g) + 2·S → 2·O(a)</td>
<td>προσρόφηση O2</td>
</tr>
<tr>
<td></td>
<td>RS9. SnCl4(g) + 2·O(a) → SnO2(s) + 2·Cl2(a)</td>
<td>αντίδραση</td>
</tr>
<tr>
<td></td>
<td>RS10. Cl2(a) → Cl2(g) + S</td>
<td>εκρόφηση Cl2</td>
</tr>
</tbody>
</table>

1 Ο δείκτης (a) δηλώνει προσφορμένο χημικό είδος, ο δείκτης (g) δηλώνει είδος στην αέρια φάση, ο δείκτης (s) δηλώνει το στερεό που αποτείθεται και το σύμβολο S δηλώνει ελεύθερο ενεργό κέντρο επιφάνειας.

Στο μηχανισμό Α, τα μόρια SnCl4 μεταφέρονται στην επιφάνεια όπου διασπώνται σύμφωνα με την αντίδραση προσρόφησης RS1. Στη συνέχεια τα προσφορμένα μόρια SnCl2 αντιδρούν με το αέριο O2 (αντίδραση RS2) και παράγουν το στερεό υμένιο SnO2. Ο μηχανισμός Β υποθέτει ότι ο αέριος SnCl4 αντιδρά με το στρώμα του οξυγόνου (αντίδραση RS4), το οποίο σχηματίστηκε από την αντίδραση διάσπασης του O2 (αντίδραση RS3). Στο μηχανισμό Γ, η αντίδραση διάσπασης του SnCl4 (αντίδραση RS5) οδηγεί σε δύο προσφορμένα χημικά είδη (SnCl2 και Cl2). Ο προσφορμένος SnCl2 αντιδρά με το αέριο O2 (αντίδραση RS4) για να σχηματίσει το στερεό υμένιο. Τέλος, η περίσσεια Cl2 που σχηματίστηκε από τις αντιδράσεις RS5 και RS6, μεταφέρεται στην αέρια φάση μέσω της αντίδρασης εκρόφησης RS7. Ο μηχανισμός Δ περιλαμβάνει την αντίδραση του αερίου SnCl4 με το προσφορμένο οξυγόνο (αντίδραση RS8), οδηγώντας στην ανάπτυξη του υμένιου του SnO2 και στην προσρόφηση του Cl2 (αντίδραση RS9). Το προσφορμένο Cl2 εγκαταλείπει.
την επιφάνεια μέσω της αντίδρασης εκρόφησης S10. Είναι φανερό ότι, οι μηχανισμοί Γ και Δ αποτελούν τις εκδόσεις τριών-σταδίων των μηχανισμόν Α και Β, αντίστοιχα. Πρέπει να σημειωθεί ότι στους μηχανισμούς Γ και Δ, το Cl₂ προσφοράται στα ελεύθερα ενεργά κέντρα της επιφάνειας χωρίς να διασπάται. Αυτή η παραδοχή θεωρείται λογική, αφού το Cl₂ δεν αντιδρά μετά την πορσρόφηση του [Fogler, 1992]. Από την άλλη πλευρά, γίνεται η παραδοχή ότι το O₂ προσφοράται αφού προηγουμένως έχει διασπασθεί [Chae et al., 2006].

3.4.3 Εξαγωγή ρυθμού ανάπτυξης

Μετά την επιλογή των πιθανών χημικών αντιδράσεων οι οποίες μπορούν να συμμετέχουν στον υποψήφιο κινητικό μηχανισμό, η ανάπτυξη του μηχανισμού και, κατά συνέπεια, η εξαγωγή του ρυθμού ανάπτυξης περιλαμβάνει τα ακόλουθα στάδια:

1. Διατύπωση των ισοζυγίων μάζας των επιφανειακών συγκεντρώσεων όλων των προσροφημένων χημικών ειδών.
2. Επίλυση του συστήματος των διαφορικών εξισώσεων.
3. Διατύπωση της έκφρασης του ρυθμού ανάπτυξης.

Στην ισορροπία, η επίλυση του συστήματος των διαφορικών εξισώσεων καταλήγει σε αναλυτικές εκφράσεις των επιφανειακών συγκεντρώσεων των προσροφημένων χημικών ειδών ως συνάρτηση των κινητικών παραμέτρων.

Στη συνέχεια περιγράφεται αναλυτικά η εξαγωγή του ρυθμού ανάπτυξης για το μηχανισμό Α (μηχανισμό "μιας κατεύθυνσης" 2-σταδίων) και το μηχανισμό Γ (μηχανισμό "μιας κατεύθυνσης" 3-σταδίων).

- Μηχανισμός "μιας κατεύθυνσης" 2-σταδίων

Στο Σχήμα 3.6 δίνεται μια σχετική αναπαράσταση του μηχανισμού Α που περιγράφηκε στην προηγούμενη παράγραφο.

![Σχήμα 3.6 Μηχανισμός "μιας κατεύθυνσης" 2-σταδίων (μηχανισμό Α)](image-url)
Όπως γίνεται φανερό, μόνο τα μόρια του SnCl₄ προσροφώνται στα ελεύθερα ενεργά κέντρα της επιφάνειας. Το ισοζύγιο μάζας του προσροφημένου SnCl₂(a) δίνεται από τη διαφορική εξίσωση:

\[
\frac{\partial \left[\text{SnCl}_2(a)\right]}{\partial t} = k_1 P_{\text{SnCl}_4} [S] - k_2 \left[\text{SnCl}_2(a)\right] P_{O_2}
\]

(3.46)

όπου τα ελεύθερα ενεργά κέντρα της επιφάνειας προσδιορίζονται από τη σχέση:

\[
[\text{SnCl}_2(a)] + [S] = 1
\]

(3.47)

Στις εξισώσεις (3.46) και (3.47), η επιφανειακή συγκέντρωση ενός προσροφημένου χημικού είδους, [A], εκφράζεται από το κλάσμα της συνολικής επιφάνειας που καλύπτεται από το χημικό είδος A. Επίσης, Π₂ είναι η μερική πίεση του χημικού είδους A στην αέρια φάση.

Σύμφωνα με την αντίδραση RS2 του Πίνακα 3.5, ο ρυθμός απόθεσης του υμενίου SnO₂ δίνεται από τη σχέση:

\[
R_d = k_2 P_{O_2} \left[\text{SnCl}_2(a)\right]
\]

(3.48)

όπου k₂ είναι η κινητική σταθερά της επιφανειακής αντίδρασης RS2.

Στην ισορροπία, η κλασματική επιφανειακή κάλυψη του προσροφημένου SnCl₂(a) υπολογίζεται από τη σχέση:

\[
[\text{SnCl}_2(a)] = \frac{k_1 P_{\text{SnCl}_4}}{k_1 P_{\text{SnCl}_4} + k_2 P_{O_2}}
\]

(3.49)

Συνδυάζοντας τις εξισώσεις (3.48) και (3.49), προκύπτει η έκφραση του ρυθμού απόθεσης:

\[
R_d = \frac{k_1 P_{\text{SnCl}_4} k_2 P_{O_2}}{k_1 P_{\text{SnCl}_4} + k_2 P_{O_2}}
\]

(3.50)

Τέλος, ο ρυθμός ανάπτυξης του υμενίου SnO₂ υπολογίζεται από τη σχέση:

\[
GR = f \cdot R_d
\]

(3.51)
Στην εξίσωση (3.51), ο παράγοντας \(f \) χρησιμοποιείται για τη μετατροπή του ρυθμού απόθεσης, \(R_d \) (mol/m²s) στο ρυθμό ανάπτυξης, \(GR \) (μm/h). Ο παράγοντας \(f \) ισούται με
\[36 \cdot 10^8 M_s / \rho_s. \]
\(M_s \) και \(\rho_s \) είναι το μοριακό βάρος και η πυκνότητα του στερεού υμενίου SnO₂, αντίστοιχα.

Μηχανισμός “μιας κατεύθυνσης” 3-σταδίων

Στο Σχήμα 3.7 δίνεται μια σχηματική αναπαράσταση του μηχανισμού Γ που περιγράφηκε στην προηγούμενη παράγραφο.

![Σχήμα 3.7 Μηχανισμός “μιας κατεύθυνσης” 3-σταδίων (μηχανισμός Γ) |](image)

Τα ισοζύγια μάζας των προσροφημένων χημικών ειδών δίνονται από τις διαφορικές εξισώσεις:

\[
\frac{\partial [\text{SnCl}_2(\text{a})]}{\partial t} = k_5 P_{\text{SnCl}_4} [S]^2 - k_6 [\text{SnCl}_2(\text{a})] P_{\text{O}_2}
\]

(3.52)
\[
\frac{\partial[\text{Cl}_2(a)]}{\partial t} = k_5 \text{P}_{\text{SnCl}_2} [S]^2 + k_6 [\text{SnCl}_2(a)] P_{O_2} - 2k_7 [\text{Cl}_2(a)]
\] \hspace{1cm} (3.53)

Τα ελεύθερα ενέργεια κέντρα της επιφάνειας προσδιορίζονται από το συνολικό ισοζύγιο:

\[
[\text{SnCl}_2(a)] + [\text{Cl}_2(a)] + [S] = 1
\] \hspace{1cm} (3.54)

Σύμφωνα με την αντίδραση RS6 του Πίνακα 3.5, ο ρυθμός απόθεσης του υγρού SnO_2 δίνεται από τη σχέση:

\[R_d = k_6 P_{O_2} [\text{SnCl}_2(a)] \] \hspace{1cm} (3.55)

όπου \(k_6 \) είναι η κινητική σταθερά της επιφανειακής αντίδρασης RS6. Από τις σχέσεις (3.52) και (3.55), προκύπτει:

\[R_d = k_5 P_{\text{SnCl}_2} [S]^2 \] \hspace{1cm} (3.56)

Συνδυάζοντας τις σχέσεις (3.52) έως (3.54), η κλασματική συγκέντρωση \([S]\) προκύπτει από τη λύση της δευτεροβάθμιας εξίσωσης:

\[k_5 P_{\text{SnCl}_2} [S]^2 + k_6 P_{O_2} \left(\sqrt{\frac{2k_5 P_{\text{SnCl}_2}}{k_7}} + 1 \right) [S] - k_6 P_{O_2} = 0 \] \hspace{1cm} (3.57)

Στη σχέση (3.57), \(k_i \) (i=5,6,7) είναι οι κινητικές σταθερές των αντιδράσεων RSj (j=5,6,7) του Πίνακα 3.5.

Στην ισορροπία, ο ρυθμός απόθεσης δίνεται από τη σχέση:

\[
R_d = \frac{-k_6 P_{O_2} \left(\sqrt{\frac{2k_5 P_{\text{SnCl}_2}}{k_7}} + 1 \right) + \sqrt{k_5^2 P_{O_2} \left(\sqrt{\frac{2k_5 P_{\text{SnCl}_2}}{k_7}} + 1 \right)^2 + 4k_5 P_{\text{SnCl}_2} k_6 P_{O_2}}}{4k_5 P_{\text{SnCl}_2}}
\] \hspace{1cm} (3.58)

Η εξαγωγή των ρυθμών απόθεσης για τους μηχανισμούς Β και Δ προκύπτουν με ανάλογο τρόπο. Οι εκφράσεις του ρυθμού απόθεσης για τους τέσσερις υποψήφιους μηχανισμούς που εξετάζονται, συνοψίζονται στον Πίνακα 3.6.
3.4.4 Εκτίμηση κινητικών παραμέτρων

Στόχος αυτής της διαδικασίας είναι ο προσδιορισμός των τιμών των κινητικών παραμέτρων των υποψήφιων μοντέλων ανάπτυξης οξειδίου του κασσιτέρου, οι οποίες εξασφαλίζουν τη βέλτιστη συμφωνία προβλέψεων του μοντέλου και διαθέσιμων πειραματικών δεδομένων.

\[
\gamma(k) = \sum_{i=1}^{N} \left(GR_{i}^{\text{mod}}(k) - GR_{i}^{\text{exp}} \right)^{2}
\]

(3.59)

Στην εξίσωση (3.59), \(GR_{i}^{\text{mod}}(k) \) and \(GR_{i}^{\text{exp}} \) είναι οι υπολογισμένοι και οι μετρούμενοι πειραματικά, αντίστοιχα, μέσοι ρυθμοί ανάπτυξης του υμενίου. \(k \) είναι το άνυσμα των κινητικών παραμέτρων και \(N \) ο αριθμός των πειραματικών δεδομένων. Στόχος είναι ο προσδιορισμός του ανύσματος \(k \), σε ένα δεδομένο διάστημα αναζήτησης, για το οποίο το σφάλμα \(f(k) \) γίνεται ελάχιστο.

Η διάταξη και τα στοιχεία του ανύσματος \(k \) εξαρτώνται από το κινητικό μοντέλο. Γίνεται η παραδοχή ότι οι κινητικές στάθμες των αντιδράσεων \(k_{i} \) ακολουθούν την έκφραση τύπου Arrhenius:
\[k_i = A_i \exp \left(-\frac{E_i}{RT} \right), \quad i = 1, \ldots, NR \] (3.60)

Στη σχέση (3.60), \(T \) είναι η θερμοκρασία και \(R \) είναι η παγκόσμια σταθερά των αερίων [8.31441 J/(mol K)] και \(N_R \) ο αριθμός των στοιχειωδών αντιδράσεων/σταδίων του κινητικού μοντέλου. Κάθε κινητική σταθερά \(k_i \) αντιστοιχεί σε δύο παραμέτρους \((A_i \text{ και } E_i) \), οπότε η διάσταση του ανύσματος \(k \) είναι \(4 \times 1 \) για τα μοντέλα 2-σταδίων και \(6 \times 1 \) για τα μοντέλα 3-σταδίων, που αναπτύχθηκαν στην προηγούμενη παράγραφο.

Οι τιμές των κινητικών παραμέτρων, που προκύπτουν με προσαρμογή στα πειραματικά δεδομένα του ρυθμού ανάπτυξης υμένιων \(\text{SnO}_2 \) παρουσιάζονται στον Πίνακα 3.7. Προφανώς, η ενέργεια ενεργοποίησης των αντιδράσεων \(\text{RS2} \) και \(\text{RS7} \) είναι πολύ χαμηλές συγκριτικά με τις συνήθεις τιμές αντιδράσεων αερίων-στερεών (50-100kJ/mol). Για το λόγο αυτό, οι μηχανισμοί \(\text{A} \) και \(\text{Γ} \) δε λαμβάνονται υπόψη στην περαιτέρω διερεύνηση του κινητικού μηχανισμού. Εξαιτίας της μεγάλης συγκέντρωσης του \(\text{O}_2 \) στα πειράματα που έγιναν, είναι πολύ πιθανό το υμένιο \(\text{SnO}_2 \) να σχηματίζεται μέσω της αντίδρασης του αερίου \(\text{SnCl}_4 \) με το προσροφημένο οξυγόνο (αντιδράσεις \(\text{RS4} \) και \(\text{RS9} \)) στους μηχανισμούς \(\text{B} \) και \(\text{Δ} \). Αυτό είναι σε συμφωνία με τα συμπεράσματα του Ghoshtagore [Ghoshtagore, 1978].

Πίνακας 3.7 Κινητικές παράμετροι των μηχανισμών ανάπτυξης υμενίων \(\text{SnO}_2 \)

<table>
<thead>
<tr>
<th>Μηχανισμός Α</th>
<th>(A) (mol Pa m(^{-2}))</th>
<th>(E_a) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1. (\text{SnCl}_4(g) + S \rightarrow \text{SnCl}_2(a) + \text{Cl}_2(g))</td>
<td>9.0 x 10(^{-3})</td>
<td>50</td>
</tr>
<tr>
<td>RS2. (\text{SnCl}_2(a) + O_2(g) \rightarrow \text{SnO}_2(s) + \text{Cl}_2(g) + S)</td>
<td>4.6 x 10(^{-9})</td>
<td>15</td>
</tr>
<tr>
<td>Μηχανισμός Β</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS3. (O_2(g) + 2 \cdot S \rightarrow 2 \cdot O(a))</td>
<td>4.8 x 10(^{-4})</td>
<td>45</td>
</tr>
<tr>
<td>RS4. (\text{SnCl}_4(g) + 2 \cdot O(a) \rightarrow \text{SnO}_2(s) + 2 \cdot \text{Cl}_2(g) + 2 \cdot S)</td>
<td>1.0 x 10(^{-3})</td>
<td>40</td>
</tr>
<tr>
<td>Μηχανισμός Γ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS5. (\text{SnCl}_4(g) + 2 \cdot S \rightarrow \text{SnCl}_2(a) + \text{Cl}_2(a))</td>
<td>1.6 x 10(^{1})</td>
<td>40</td>
</tr>
<tr>
<td>RS6. (\text{SnCl}_2(a) + O_2(g) \rightarrow \text{SnO}_2(s) + \text{Cl}_2(a))</td>
<td>7.0 x 10(^{0})</td>
<td>65</td>
</tr>
<tr>
<td>RS7. (\text{Cl}_2(a) \rightarrow \text{Cl}_2(g) + S)</td>
<td>4.5 x 10(^{-4})</td>
<td>12</td>
</tr>
<tr>
<td>Μηχανισμός Δ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS8. (O_2(g) + 2 \cdot S \rightarrow 2 \cdot O(a))</td>
<td>4.8 x 10(^{-4})</td>
<td>45</td>
</tr>
<tr>
<td>RS9. (\text{SnCl}_4(g) + 2 \cdot O(a) \rightarrow \text{SnO}_2(s) + 2 \cdot \text{Cl}_2(a))</td>
<td>3.0 x 10(^{0})</td>
<td>62</td>
</tr>
<tr>
<td>RS10. (\text{Cl}_2(a) \rightarrow \text{Cl}_2(g) + S)</td>
<td>1.0 x 10(^{2})</td>
<td>40</td>
</tr>
</tbody>
</table>
Οι μηχανισμοί Β και Δ μπορούν να συγκριθούν περαιτέρω με εκτίμηση της συνεισφοράς της εκρόφησης του Cl2 (αντίδραση RS10) στο συνολικό μηχανισμό. Ωστόσο φαίνεται στον Πίνακα 3.8, στο εύρος των λειτουργικών παραμέτρων του πειράματος, οι επιφανειακές συγκέντρωσεις του προσροφημένου οξυγόνου είναι υψηλές, ενώ το κλάσμα της επιφανειακής κάλυψης του Cl2 είναι χαμηλό στο μηχανισμό Δ. Αυτό σημαίνει ότι ο ρυθμός της αντίδρασης εκρόφησης RS10 δεν επηρεάζει τον ρυθμό ανάπτυξης σημαντικά, και η εκρόφηση του Cl2 είναι πολύ γρήγορη σε σχέση με την αντίδραση RS9. Συνεπώς, μεταξύ των μηχανισμών που μελετήθηκαν, ο μηχανισμός Β φαίνεται να είναι ο πιο ρεαλιστικός.

Πίνακας 3.8 Επιφανειακές συγκέντρωσεις (σε ποσοστό επί της συνολικής επιφάνειας) για τις τιμές των κινητικών παραμέτρων του Πίνακα 3.7

<table>
<thead>
<tr>
<th>Επιφανειακή συγκέντρωση</th>
<th>Μηχανισμός Β</th>
<th>Μηχανισμός Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>[O(a)]</td>
<td>80.7 – 95.3</td>
<td>90.2 – 95.9</td>
</tr>
<tr>
<td>[S]</td>
<td>4.7 – 19.3</td>
<td>2.1 – 6.2</td>
</tr>
<tr>
<td>[Cl₂(a)]</td>
<td>-</td>
<td>2.0 – 3.6</td>
</tr>
</tbody>
</table>
3.4.5 Σύγκριση υπολογισμών και πειραμάτων

Στα σχήματα 3.8 έως 3.13 που ακολουθούν, απεικονίζεται η σύγκριση πειραματικών μετρήσεων και υπολογισμών του μοντέλου βάση του μηχανισμού B, κατά μήκος της κύριας αξονικής και της κύριας εγκάρσιας διεύθυνσης του υποστρώματος. Συγκεκριμένα, τα σχήματα 3.8 και 3.9 αντιστοιχούν στο πειραματικό σημείο P2 (βλέπε Πίνακα 3.2), τα σχήματα 3.10 και 3.11 αντιστοιχούν στο πειραματικό σημείο P5 και τα σχήματα 3.12 και 3.13 αντιστοιχούν στο πειραματικό σημείο P10.

Στη χαμηλή θερμοκρασία των 410°C (σχήμα 3.8), ο πειραματικά μετρούμενος ρυθμός ανάπτυξης αυξάνει κατά μήκος της κύριας αξονικής διεύθυνσης του υποστρώματος και η τάση αυτή περιγράφεται αρκετά καλά από το μοντέλο. Στην ίδια θερμοκρασία και στην εγκάρσια διεύθυνση (σχήμα 3.9), ο ρυθμός ανάπτυξης που μετρήθηκε πειραματικά είναι μικρότερος στο κέντρο του υποστρώματος σε σχέση με την περιφέρεια του. Σύμφωνα με την εξήγηση που δόθηκε στην παράγραφο 3.2.7, η σημαντική αυτή ανομοιομορφία αποδίδεται στο σχεδιασμό της εισόδου του αντιδραστήρα ΧΑΑ, που οδηγεί σε ανεπαρκή ανάμιξη των αντιδρώντων πριν αυτά φθάσουν στο υπόστρωμα απόδεσης. Ως προς προκύπτει από το σχήμα 3.9, ο μηχανισμός B περιγράφει αυτήν την τάση αρκετά ικανοποιητικά.

Ανάλογη είναι η τάση του πειραματικά μετρούμενου ρυθμού ανάπτυξης στην υψηλή θερμοκρασία των 470°C, στην αξονική και στην εγκάρσια διεύθυνση, όπως φαίνεται από τα σχήματα 3.10 και 3.11, αντίστοιχα. Το μοντέλο, αν και περιγράφει ικανοποιητικά τις τάσεις του πειράματος, υπολογίζει μεγαλύτερους ρυθμούς ανάπτυξης και στις δύο διεύθυνσεις. Η απόκλιση αυτή μπορεί να αποδοθεί στην απόλυτη πρόδρομο υλικού στην αέρια φάση, λόγω θερμικής διάσπασης, η οποία ενισχύεται στις υψηλότερες θερμοκρασίες, και η οποία δεν περιγράφεται στο μοντέλο που βασίζεται στο μηχανισμό B.

Η απόκλιση μεταξύ των προβλέψεων του μοντέλου και των πειραματικών μετρήσεων γίνεται ακόμα πιο σημαντική στο πειραματικό σημείο P10 (σχήματα 3.12 και 3.13) στο οποίο ο ρυθμός ροής του φέροντος αερίου, F_d, μειώνεται από 400 σε 200ml/min. Στη διάρκεια του πειράματος, εξαιτίας του χαμηλού ρυθμού ροής του φέροντος αερίου, τα αντιδρώντα αντιδράντο μεταξύ τους στην αέρια φάση πριν φθάσουν στη στερεή επιφάνεια απόδεσης. Κατά συνέπεια, η επιθυμητή επιφανειακή αντίδραση απόδεσης περιορίζεται, προκαλώντας μικρότερο ρυθμό ανάπτυξης. Από την άλλη πλευρά, το μοντέλο που στηρίζεται στον κινητικό μηχανισμό B που δεν περιλαμβάνει αέριες αντιδράσεις, προβλέπει ότι η βελτίωση της ανάμιξης των αντιδρώντων, συνέπεια της μείωσης του ρυθμού ροής του φέροντος αερίου, υπερεκτιμά τη συγκέντρωση των αντιδρώντων και τελικά, το ρυθμό ανάπτυξης. Η ανεπάρκεια του μηχανισμού B να περιγράψει τις πειραματικές μετρήσεις στις υψηλές θερμοκρασίες και στους χαμηλούς ρυθμούς ροής, που ευνοούν τις αντιδράσεις στην αέρια φάση, υποδεικνύει ότι η επίδραση των χημικών αντιδράσεων στην αέρια φάση είναι σημαντική στις συγκεκριμένες συνθήκες λειτουργίας και θα πρέπει να λαμβάνεται υπόψη στην προσομοίωση.
Σχήμα 3.8 Προβλέψεις μοντέλου και πειραματικές μετρήσεις ρυθμού ανάπτυξης στην αξονική διεύθυνση, κατά μήκος της κεντρικής γραμμής του υποστρώματος ($T_w = 410^\circ C$, $T_b = 23.2^\circ C$, $F_d = 400ml/min$, $F_o = 150ml/min$, $F_c = 200ml/min$).

Σχήμα 3.9 Προβλέψεις μοντέλου και πειραματικές μετρήσεις ρυθμού ανάπτυξης στην εγκάρσια διεύθυνση, κατά μήκος της κεντρικής γραμμής του υποστρώματος ($T_w = 410^\circ C$, $T_b = 23.2^\circ C$, $F_d = 400ml/min$, $F_o = 150ml/min$, $F_c = 200ml/min$).
Σχήμα 3.10 Προβλέψεις μοντέλου και πειραματικές μετρήσεις ρυθμού ανάπτυξης στην αξονική διεύθυνση, κατά μήκος της κεντρικής γραμμής του υποστρώματος ($T_w = 470^\circ C$, $T_b = 28.3^\circ C$, $F_d = 400\text{ml/min}$, $F_o = 150\text{ml/min}$, $F_c = 200\text{ml/min}$).

Σχήμα 3.11 Προβλέψεις μοντέλου και πειραματικές μετρήσεις ρυθμού ανάπτυξης στην εγκάρσια διεύθυνση, κατά μήκος της κεντρικής γραμμής του υποστρώματος ($T_w = 470^\circ C$, $T_b = 28.3^\circ C$, $F_d = 400\text{ml/min}$, $F_o = 150\text{ml/min}$, $F_c = 200\text{ml/min}$).
Σχήμα 3.12 Προβλέψεις μοντέλου και πειραματικές μετρήσεις ρυθμού ανάπτυξης στην αξονική διεύθυνση, κατά μήκος της κεντρικής γραμμής του υποστρώματος ($T_w = 470^oC, T_b = 24.8^oC, F_d = 200ml/min, F_o = 150ml/min, F_c = 200ml/min$).

Σχήμα 3.13 Προβλέψεις μοντέλου και πειραματικές μετρήσεις ρυθμού ανάπτυξης στην εγκάρσια διεύθυνση, κατά μήκος της κεντρικής γραμμής του υποστρώματος ($T_w = 470^oC, T_b = 24.8^oC, F_d = 200ml/min, F_o = 150ml/min, F_c = 200ml/min$).
3.5 Ανάπτυξη υμείνιον Al

3.5.1 Χημεία απόθεσης Al από DMEA

Το αλουμινίο σχηματίζεται μέσω της διάπτασης του DMEAAA ([(CH₃)₂C₂H₅]NAlH₃) σε DMEA ([(CH₃)₂C₂H₅]N) και αλάνιο (AlH₃):

\[
[(CH₃)₂C₂H₅]NAlH₃(g) \rightarrow Al(s) + [(CH₃)₂C₂H₅]N(g) + 3/2H₂(g) \tag{3.61}
\]

![Σχήμα 3.14 Χημεία απόθεσης αλουμινίου από DMEAΑ στην επιφάνεια απόθεσης](image)

3.5.2 Ενδεικτικά αποτελέσματα προσομοιωτή

Όπως φαίνεται στο Σχήμα 3.15α (αριστερά), το θερμοκρασιακό πεδίο στις συνθήκες αναφοράς, που συνοψίζονται στον Πίνακα 2.7 του κεφ. 2, είναι ομοιόμορφο στην επιφάνεια του υποστρώματος, και συνεπώς η μεταφορά θερμότητας με αγωγή επικρατεί της μεταφοράς θερμότητας με συναγωγή. Στο πάνω αριστερό τμήμα του αντιδραστήρα, οι ισόθερμες ακολουθούν το σχήμα του συστήματος κατασκευής, συνεπεία της μεταφοράς θερμότητας μέσω των τοιχωμάτων αυτού.

Τα ανώσματα ταχύτητας στο Σχήμα 3.15α (δεξιά) αποκαλύπτουν τη δημιουργία ενός μεγάλου στροβίλου στο εσωτερικό του συστήματος κατασκευής, ο οποίος εξασφαλίζει
καλή προανάμιξη των αντιδρώντων, κάτι που είναι ιδιαίτερα επιθυμητό για την ανάπτυξη ομοιόμορφων επικαλύψεων. Ωστόσο, ο στροβίλος μπορεί να παγιδεύει τα αντιδρώντα στο σύστημα καταιονισμού και να προκαλεί ανεπιθυμητή συμπύκνωση του πρόδρομου υλικού.

Τα αποτελέσματα της προσομοίωσης στο Σχήμα 3.15β δείχνουν ότι η συγκέντρωση του N\(_2\) είναι ιδιαίτερα ομοιόμορφη στην ακτινική διεύθυνση. Το κλάσμα μάζας του DMEAΑ παραμένει σταθερό και αυξάνεται ελάχιστα στο τέλος του υποστρώματος. Όπως αναμένεται, αντίθετη τάση παρατηρείται για τα δύο προϊόντα της αντίδρασης. Συγκεκριμένα, το κλάσμα μάζας της DMEA αρχίζει να μειώνεται στα 15mm από το κέντρο του υποστρώματος, ενώ η μείωση του H\(_2\) ξεκινά στα 10mm. Τα αποτελέσματα αυτά αντιπροσωπεύουν το σχηματισμό του αλουμινίου στην επιφάνεια του υποστρώματος.

3.5.3 Σύγκριση υπολογισμών και πειραμάτων

Η σύγκριση των αποτελεσμάτων της προσομοίωσης με τα πειραματικά δεδομένα παρουσιάζεται στα Σχήματα 3.16α και 3.16β, στους 473K και 493K, αντίστοιχα. Σύμφωνα με τις πειραματικές μετρήσεις, ο ρυθμός ανάπτυξης αυξάνει στην ακτινική διεύθυνση και στις δύο θερμοκρασίες. Επιπλέον, ο ρυθμός ανάπτυξης στους 493K μειώνεται και φαίνεται να είναι λιγότερο ομοιόμορφος συγκριτικά με το ρυθμό ανάπτυξης στους 473K. Η μικρή μείωση του πειραματικά μετρούμενου ρυθμού ανάπτυξης με τη θερμοκρασία επιβεβαιώνεται και από τους υπολογισμούς. Λαμβάνοντας υπόψη ότι το σφάλμα στη μέτρηση του
πειραματικού ρυθμού ανάπτυξης είναι ±8Å/min, η συμφωνία υπολογισμών και πειραμάτων θεωρείται ικανοποιητική.

Σχήμα 3.16 Ρυθμός ανάπτυξης αλουμινίου στην ακτινική διεύθυνση, στους (α) Treact = 200°C και (β) Treact = 220°C. Σύγκριση υπολογισμών και πειραμάτων.
Πρότυπη Συστημική Ανάλυση

4.1 Αποδοτική ανάλυση ευστάθειας/διακλάδωσης

Για να γίνει εφικτή η ανάλυση ευστάθειας των λύσεων που υπολογίζει ο προσομιωτής, επιδιόρθωται η σύνδεση του με επαναληπτικές μεθόδους γραμμικής άλγεβρας που δεν απαιτούν πίνακες (matrix-free) και συνεπώς δεν επεμβαίνουν στο ίδιο το λογισμικό CFD. Αυτές είναι συνδυασμός μεθόδων προβολής τύπου Krylov και αναδρομικής προβολής. Διασυνδέονται, ως υπολογιστικό "κέλυφος", με τον προσομιωτή, δηλαδή τροφοδοτούνται μόνο με τα αποτελέσματα διαδοχικών επαναλήψεων του PHOENICS. Τελικά, οι μέθοδοι αυτές, εντοπίζουν μέσω ανάλυσης προβλημάτων ιδιοτιμών μικρής κλίμακας, τις κρίσιμες τιμές παραμέτρων, όπου μεταβάλλεται η ευστάθεια των λύσεων προβλημάτων μεγάλης κλίμακας (εν προκειμένω, των εξισώσεων των οποίων οι λύσεις είναι οι καταστάσεις μόνιμης λειτουργίας του αντιδραστήρα).

4.1.1 Επέκταση δυνατοτήτων υφιστάμενων υπολογιστικών κωδίκων

Τα εμπορικά πακέτα υπολογιστικής ρευστοδυναμικής (CFD) όπως ο FLUENT, ο FIDAP και ο PHOENICS χρησιμοποιούνται ευρέως για την επίλυση μεγάλης κλίμακας προβλημάτων που ενδιαφέρουν τη βιομηχανία. Οι εφαρμογές που ενδιαφέρουν είναι πολύπλοκα συστήματα με πολλούς βαθμούς ελευθερίας και η επίλυση τους γίνεται σε πυκνά πλέγματα. Τα μοντέλα που περιγράφουν τέτοια συστήματα αποτελούνται από συζευγμένες μη γραμμικές μερικές διαφορικές εξισώσεις που ορίζονται σε πολύπλοκες τριδιάστατες γεωμετρίες. Οι τεχνικές επίλυσης αυτών των συστημάτων χρησιμοποιούν επαναληπτικές μεθόδους που όμως η σύγκλιση τους είναι αργή και γίνεται όλο και πιο δύσκολη όσο το πρόβλημα μεγαλώνει.

Παρότι υπάρχουν σύγχρονες τεχνικές επαναληπτικής γραμμικής άλγεβρας για την αντιμετώπιση προβλημάτων μεγάλης κλίμακας δεν έχουν ενσωματωθεί ακόμα στα
υπολογιστικά πακέτα υπολογιστικής ρευστοδυναμικής (CFD) και είναι δύσκολο ή αδύνατον να επέμβει εξωτερικά ο χρήστης και να εφαρμόσει μια τέτοια τεχνική.

Πέρα από τις δυσκολίες στη σύγκλιση, οι διαθέσιμοι κώδικες δε δίνουν πληροφορίες για την ευστάθεια του συστήματος πράγμα που είναι επιθυμητό όχι μόνο από την άποψη της μη γραμμικής συμπεριφοράς αλλά και του εντοπισμού των «παραθύρων» λειτουργίας διεργασιών οι οποίες προσομοιώνονται μέσω των υπολογιστικών πακέτων.

Από τα παραπάνω αναδεικνύεται η ανάγκη να επεκταθούν οι δυνατότητες των υπαρχόντων υπολογιστικών πακέτων και να έχουν βελτιωμένες ιδιότητες σύγκλισης καθώς και να παρέχουν πληροφορίες σχετικές με την εναλλαγή ευστάθειας του συστήματος.

Σε σχέση με την επιτύχηση των υπολογιστικών πακέτων, έχουν προταθεί διάφορες τεχνικές όπως η μέθοδος των Wigton et al. (1985) και η γενίκευση της από τους Kumar et al. (1996). Στις εργασίες αυτές η επαναλητική μέθοδος που επιλέχθηκε το σύστημα, που είναι η μέθοδος SIMPLE που αναλύεται παρακάτω, επιταχύνεται επειδή σε κάθε βήμα γίνεται μια διόρθωση της εκτίμησης της λύσης. Για να εφαρμοστεί η προτεινόμενη μεθοδολογία, η οποία βασίζεται στη μέθοδο GMRES, η μέθοδος SIMPLE γράφεται σαν επαναλητική διαδικασία σταθερού σημείου και απαιτούνται μόνο τα αποτελέσματα διαδοχικών επαναλήψεων όπως δε γίνεται επέμβαση στον κώδικα. Η ίδια θεώρηση της μεθόδου επιλογής γίνεται και στην παρούσα προσέγγιση με σκοπό να εφαρμοστεί η μέθοδος αναδρομικής προβολής (RPM) όπως θα δειχθεί στη συνέχεια. Το υπολογιστικό πακέτο που χρησιμοποιείται είναι ο κώδικας πεπερασμένων όγκων elέγχου PHOENICS και η εφαρμογή είναι ένας κατακόρυφος αντιδραστήρας ΧΑΑ η λειτουργία του οποίου περιγράφεται από μή γραμμικές μερικές διαφορικές εξισώσεις.

Η βασική προσόνθηση για την εφαρμογή ενός κώδικα ‘κέλυφους’ σε συνδυασμό με το PHOENICS είναι ο αλγόριθμος SIMPLE να γραφεί ως επαναλητική μέθοδος απλού βήματος με γενική μορφή:

\[U^{n+1} = F(U^n), \quad F, \quad U \in \mathbb{R}^N \]

(4.1)

Στο σημείο αυτό υπενθυμίζεται ότι η μεθοδολογία SIMPLE (Semi Implicit Method for Pressure Linked Equations) συνίσταται στη διακριτοποίηση των μερικών διαφορικών εξισώσεων σε μετατοπισμένο πλέγμα (staggered grid), σαν αυτό που φαίνεται στο Σχήμα 4.1 για τις διάφορες μεταβλητές συνδυάζοντας πεπερασμένους ύγκους για τα βαθμοτά μεγέθη και ανάντι πεπερασμένες διαφορές για τις συνιστώσες της ταχύτητας.

Σε αυτόν το τύπο πλέγματος, οι βαθμοτές μεταβλητές, π.χ. η πίεση και η θερμοκρασία, υπολογίζονται σε συνήθεις κόμβους όπως ο Ρ του Σχήματος 4.1 ενώ οι ταχύτητες υπολογίζονται σε σημεία πάνω στις πλευρές των πεπερασμένων ύγκων.
Πεπερασμένος όγκος ελέγχου (εξίσωση συνέχειας)

Σχήμα 4.1 Ογκος ελέγχου στον οποίο γίνεται η διακριτοποίηση της εξίσωσης συνέχειας.

Οι γραμμικοποιημένες εξισώσεις που προκύπτουν γράφονται, για κάθε μεταβλητή f, ως εξής:

$$ A^* f_p = \sum_{d=E,W,N,S} A^*_d f_d + S^o $$ (4.2)

όπου το f_p είναι η τιμή της μεταβλητής f στον κόμβο P και f_d είναι η τιμή της μεταβλητής σε καθένα από τους ανατολικό(E), δυτικό(W), βόρειο(N) και νότιο(S) γειτονικό κόμβο d όπου συμβολίζονται στο Σχήμα 4.1. A_d είναι οι αντίστοιχοι γραμμικοποιημένοι συντελεστές σε αυτούς τους κόμβους και εξαρτώνται από όλες τις ανεξάρτητες μεταβλητές μεταβλητές στη «γειτονιά» του P.

Για τον υπολογισμό πεδίου ταχύτητων η βασική δυσκολία είναι ο υπολογισμός της πίεσης. Η πίεση καθορίζεται έμμεσα με την εξίσωση συνέχειας, κατά τέτοιο τρόπο ώστε δοθείσα της πίεσης, το υπολογιζόμενο πεδίο ταχύτητας ικανοποιεί την εξίσωση συνέχειας.

Οι διακριτοποιημένες εξισώσεις επιλύονται στο PHOENICS ξεχωριστά με μια παράλλαγή του αλγορίθμου SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) [Patankar, 1980], τον αλγόριθμο SIMPLEST (SIMPLEShorTened). Ο αλγόριθμος SIMPLE ξεκινάει με μια εκτίμηση της πίεσης p^*. Κατόπιν επιλύονται οι εξισώσεις ορμής για να υπολογιστούν οι συνιστώσες της ταχύτητας, έστω u^*, v^* και w^*. Εν συνεχεία υπολογίζεται η διόρθωση της πίεσης, p' και συνεπώς η νέα προσέγγιση της πίεσης $p = p^* + p'$. Υπολογίζονται οι νέες ταχύτητες u, v και w από τις u^*, v^* και w^* και εξισώσεις διόρθωσης της ταχύτητας. Στο σημείο αυτό επιλύονται οι εξισώσεις διακριτοποίησης των άλλων μεταβλητών, αν υπάρχουν και ο αλγόριθμος ξεκινά πάλι με αρχική προσέγγιση της πίεσης την τρέχουσα τιμή της. Μια σχεματική απεικόνιση του SIMPLE δίνεται στο Σχήμα 4.2.
Σχήμα 4.2 Ο αλγόριθμος SIMPLE

Η διαφορά του SIMPLE από τον SIMPLEST βρίσκεται στον τρόπο με τον οποίο γίνεται η επεξεργασία των ροών από συναγωγή και από διάχυση. Πιο συγκεκριμένα, οι συντελεστές των μεταβλητών διασπώνται σε έναν όρο που οφείλεται σε διάχυση και έναν που οφείλεται σε συναγωγή. Οι όροι που οφείλονται σε συναγωγή ενσωματώνονται στον όρο πηγής της εξίσωσης διατήρησης όρμης και θεωρούνται σταθεροί. Ο SIMPLEST συγκλίνει με λιγότερες ταλαντώσεις από τον SIMPLE και με λιγότερη υποχαλάρωση.

Μέσα στην παραπάνω επαναληπτική διαδικασία, οι γραμμικοποιημένες εξίσωσεις όπως προκύπτουν για κάθε μεταβλητή επιλύονται με επιλύτες γραμμικών συστημάτων που μπορεί να επιλέξει ο χρήστης. Η πιο συνήθης μέθοδος είναι η Gauss-Seidel.

Ο αλγόριθμος SIMPLEST μπορεί να γραφεί με τη μορφή μιας γραμμικής απεικόνισης, δηλαδή μιας επαναληπτικής διαδικασίας σταθερού σημείου επεξής σε κάθε κύκλο, η τρέχουσα προσέγγιση της λύσης προκύπτει από την τιμή στην προηγούμενη επανάληψη.
4.1.2 Ο κώδικας ‘κέλυφος’: Η μέθοδος αναδρομικής προβολής (RPM)

Στην παράγραφο αυτή περιγράφεται ο αλγόριθμος με τον οποίο εφαρμόζεται η RPM [Shorff and Keller, 1993; Jarausch and Makens, 1987], ο κώδικας 'κέλυφος' δηλαδή, για τη σταθεροποίηση και επιτάχυνση επαναλητικών διαδικασιών σταθερού σημείου.

Ο προτεινόμενος αλγόριθμος υπολογίζει μια προσέγγιση Ζ της βάσης Z του υπόχωρου που αντιστοιχεί στις ιδιοτιμές που χαρακτηρίζουν την ευστάθεια του συστήματος και τις αντίστοιχες προβολές:

\[\hat{P} = \hat{Z} \hat{Z}^T \quad \text{και} \quad \hat{Q} = \mathbf{I} - \hat{Z} \hat{Z}^T \] (4.3)

Αφού γίνει ο εντοπισμός της βάσης Z, εφαρμόζεται μια ειδική μέθοδος Newton στον ασταθή υπόχωρο P, ενώ στο ορθογώνιο συμπλήρωμα του Q συνεχίζει η επαναλητική μέθοδος απλού βήματος.

Ετσι έχουμε:

1. \[p^{(0)}(0) = \hat{P} U^{(0)}(\lambda), \quad q^{(0)}(0) = \hat{Q} U^{(0)}(\lambda) \]

2. Επαναλητική διαδικασία

a) \[p^{(v+1)} = p^{(v)} + (I - \hat{F}_p^{(0)})^{-1} (f(p^{(v)}, q^{(v)}, \lambda) - p^{(v)}) \]

b) \[q^{(v+1)} = q^{(v)} + g(p^{(v)}, q^{(v)}, \lambda) \]

3. \[U^*(\lambda) = p^{(v_{\text{final})}} + q^{(v_{\text{final})}} = p^* + q^* \]

Εδώ χρησιμοποιήθηκαν οι σχέσεις:

\[\hat{f}(p, q, \lambda) \equiv \hat{F}(p + q, \lambda) \] και \[\hat{g}(p, q, \lambda) \equiv \hat{G}(p + q, \lambda) \] (4.5)

Για να ισχύει ο παραπάνω αλγόριθμος πρέπει να υπάρχει ο αντίστροφος \((I - \hat{F}_p^{(0)})^{-1} \). Για τις ανάγκες της ανάλυσης στην παράγραφο αυτή θεωρείται ότι υπάρχει. Εύκολα αποδεικνύεται ότι:

\[(I - \hat{F}_p^{(0)})^{-1} = \hat{Z} (I - \hat{Z} \hat{F}_U \hat{Z})^{-1} \hat{Z}^T \] (4.6)

Για τη διεξαγωγή των υπολογισμών εισάγεται η μεταβλητή z για την οποία ισχύει:

\[z := \hat{Z}^T p = \hat{Z}^T U, \quad z \in \mathbb{R}^m \quad \text{και} \quad \hat{p} = \hat{Z} z \] και \[U = \hat{Z} z + q \] (4.7)

Το βήμα 2a στη σχέση (4), με βάση τη νέα αυτή μεταβλητή γράφεται:

\[z^{(v+1)} = z^{(v)} + (I - \hat{Z} \hat{F}_U \hat{Z})^{-1} (\hat{Z} F(U^{(v)}, \lambda) - z^{(v)}) \] (4.8)

Για τον υπολογισμό του πίνακα \(\hat{Z} \hat{F}_U \hat{Z} \) χρησιμοποιείται προσεγγιστική σχέση βασιζόμενη σε διαφορές:

\[\hat{F}_U \hat{Z} \approx [F(U + \epsilon \hat{Z} i, \lambda - F(U, \lambda))/\epsilon \quad \text{για} \ i = 1, m] \] (4.9)

Με τον τρόπο αυτό χρειάζεται μόνο ένας επιπλέον υπολογισμός της F αφού το \(F(U, \lambda) \) χρειάζεται και υπολογίζεται για το υπόλοιπο των μεθόδου.
Ο κώδικας που χρησιμοποιείται στη πράξη καλείται αλγόριθμος βηματισμού RPM και κάνει βηματισμό στη παράμετρο λ δίνεται συνοπτικά στη συνέχεια. Ο αλγόριθμος χρειάζεται ως δεδομένα δύο λύσεις (U₁, λ₁) και (U₂, λ₂) πάνω στο κλάδο λύσεων Γ, καθώς και τις παραμέτρους n_max, δ, το βήμα δλ και τη τιμή tol για τον έλεγχο της σύγκλισης. Στον προτεινόμενο αλγόριθμο η σταθεροποιμένη επαναληπτική διαδικασία (4) εφαρμόστηκε χρησιμοποιώντας τη παράμετρο z σύμφωνα με τη σχέση (8), και τον ορισμό του Ξγια να γραφεί \(\dot{Q} U = U - \dot{Z} z \). Στον παρακάτω αλγόριθμο εφαρμόζονται οι μέθοδοι που αναφέρονται σε προηγούμενες παραγράφους για τον υπολογισμό αρχικής τιμής \(U(0) \), την αύξηση βάσης Z, την ελάττωση βάσης Z και τη μέθοδο δυνάμεων (Z). Επίσης \(s_0(H) \) είναι μια ιδιοτιμή του πίνακα Η. Το βήμα δλ, διατηρείται σταθερό όσο ο βηματισμός στη παράμετρο προχωρά. Σε ορισμένες περιπτώσεις μπορεί να είναι καλό αυτό να μεταβάλλεται. Τέλος πρέπει να σημειωθεί ότι ο αλγόριθμος λύνει γραμμικά συστήματα μόνο με το πίνακα (I - H) που έχει διάσταση \(m \times m \) και αποφεύγεται η εύρεση αντίστροφου του Ιακωβιανού πίνακα του F που έχει διάσταση \(N \times N \).

Βηματισμός με RPM \((U_1, \lambda_1, U_0, \lambda_0, \delta\lambda, n_{\text{max}}, \text{tol})\)

\[
Z = \begin{bmatrix} \end{bmatrix}
\]

while (λ)

1. Υπολογισμός αρχικής τιμής \(U(0) \)

2. \(v = 0 \)

3. \(F = F(U, \lambda) \)

4. \(F_U Z_i = [F(U + \epsilon Z_i, \lambda) - F(U, \lambda)] / \epsilon \)

5. \(H = Z [F_U Z] \)

6. while (\(||U - F|| < \text{tol} \))

\[
z = Z U; \quad q = U - Z z; \quad \zeta = Z^T F
\]

1. Σταθεροποιμένη επαναληπτική διαδικασία

 (a) \(z = z + (I - H)^{-1}(\zeta - z) \)

 (b) \(q = F - Z\zeta \)

2. \(U = Zz + q \)

3. \(F = F(U, \lambda) \)

4. \(v = v + 1 \)

If (\(v > n_{\text{max}} \))

1. Αύξηση διάσταση βάσης Z.
2. Μηδενισμός μετρητή, ν = 0
3. Υπολογισμός $F_u Z$

Endif

Endwhile

7. if $(\sigma_k(H) \leq |z| < 1-\delta)$ για κάποιο k

ελάττωση βάσης Z

Endif

8. μέθοδος δυνάμεων (Z)

9. $(U_{-1},\lambda_{-1} : U_0,\lambda_0) = (U_0,\lambda_0 : U,\lambda)$

1 ENDWHILE

4.1.3 Εφαρμογή της μεθόδου RPM

Η θεώρηση του επαναληπτικού αλγορίθμου SIMPLE ως επαναληπτικής διαδικασίας σταθερού σημείου, όπως αυτή που δίνεται στη σχέση (7.4), δίνει τη δυνατότητα να εφαρμοστεί η μέθοδος αναδρομικής προβολής (RPM) χωρίς να απαιτείται κάποια επέμβαση στον κώδικα.

Προσταρχικός στόχος είναι η αντιμετώπιση των προβλημάτων σύγκλισης που αντιμετωπίζουν γενικά οι μέθοδοι τύπου SIMPLE λόγω της μη ταυτόχρονης επίλυσης των διάφορων μεταβλητών. Συγκεκριμένα, η επαναληπτική διαδικασία F που αντιπροσωπεύει το σύνολο των υπολογισμών της νέας προσέγγισης των μεταβλητών καθυστερεί να συγκλίνει για λόγους που οφείλονται είτε στην ιδιαίτερη αριθμητική επίλυση είτε σε λόγους που συνδέονται με τη μη γραμμικότητα του φυσικού προβλήματος. Για τιμή παραμέτρου που βρίσκεται κοντά στα ιδιαίτερα σημεία η σύγκλιση στη μόνιμη κατάσταση γίνεται πιο δύσκολα. Στους καθορισμένους κώδικες CFD έχει γίνει σημαντική επένδυση στον τομέα της επιλογής και συστήσεως εφαρμογής μεθόδων διακριτοποίησης και επίλυσης έτσι ώστε να διατηρείται αριθμητικών αστάθειών. Παρόλα αυτά είναι δυνατόν η καθυστέρηση στη σύγκλιση να οφείλεται και σε πρόβλημα της αριθμητικής μεθόδου που συνήθως αποδίδεται σε παραμέτρους που επιλέγεται η χρήση του κώδικα. Λόγω των παραπάνω μπορεί να θεωρηθεί ότι γενικά είναι λίγες οι ιδιοτιμές εκείνες που καθυστερούν τη σύγκλιση και συνεπώς κάνουν τις μεθόδους τυπού SIMPLE καλές υποψήφιες για την εφαρμογή της μεθόδου αναδρομικής προβολής.

Με εφαρμογή της RPM είναι δυνατόν να προσεγγιστεί ο υπόχωρος της F_u που αντιστοιχεί στις ιδιοτιμές που πλησιάζουν, ή εξερευνούν, τα όρια εστάθμευσης ανεξάρτητα από την αιτία της αστάθειας. Στόχος είναι, από τη μια να βελτιωθεί η ταχύτητα σύγκλισης λόγω της απομόνωσης των «επικίνδυνων» ιδιοτιμών αλλά επίσης να εντοπιστούν τα κρίσιμα σημεία
του φυσικού προβλήματος χωρίς να γίνει κάποια παρέμβαση στον κώδικα προσομοίωσης της ροής.

Στο σημείο αυτό υπενθυμίζονται κάποια στοιχεία που αφορούν την RPM και που έχουν αναλυθεί σε προηγούμενο κεφάλαιο: ο πίνακας $H = Z^T F_U Z \in \mathbb{R}^{m \times m}$ είναι ο πίνακας διάστασης m που έχει ως ιδιοτιμές τις επικίνδυνες ιδιοτιμές της $F_U \in \mathbb{R}^{N \times N}$ όπου N είναι πλήθος των αγγόστων για τη συγκεκριμένη διακριτοποίηση και $Z \in \mathbb{R}^{N \times m}$ είναι μια ορθοκανονική βάση του χώρου που αντιστοιχεί σε αυτές τις ιδιοτιμές.

Η εφαρμογή της RPM σε έναν εμπορικό κώδικα CFD παρουσιάζει την επιπρόσθετη δυσκολία της σύνδεσης των δύο κωδίκων και τον τρόπο με τον οποίο αντιμετωπίζεται το πρόβλημα αυτό εξαρτάται από τον κώδικα CFD και την πλατφόρμα στη οποία λειτουργεί. Η παρούσα εργασία έγινε με χρήση της έκδοσης 3.4 του εμπορικού κώδικα PHOENICS σε λειτουργικό περιβάλλον UNIX και Linux. Ο PHOENICS στην παρούσα μορφή δεν παρέχει άμεσα τη δυνατότητα συνδυασμού του με εξωτερικό πρόγραμμα πράγμα που προκάλεσε σημαντικές δυσκολίες.

Σχήμα 4.3 O συνολικός κώδικας RPM-PHONICS που έχει τη μορφή κυρίου προγράμματος-υπορουτίνας. Με F συμβολίζεται η εκτέλεση προκαθορισμένων επαναλήψεων του SIMPLE για την επίλυση των διακριτοποιημένων εξισώσεων.

Το συνολικό πρόγραμμα στην τελική του μορφή ακολουθεί τη λογική κυρίως προγράμματος-υπορουτίνας όπου ο κώδικας της RPM είναι το κυρίως πρόγραμμα μέσα από το οποίο
καλείται ο PHOENICS σαν υπορούντα (βλ. Σχήμα 4.3). Ο καθορισμός του F στην παρούσα περίπτωση, δηλαδή πόσες επαναλήψεις του PHOENICS εκτελούνται σε κάθε βήμα της επαναληπτικής διαδικασίας σταθερού σημείου, είναι κρίσιμος για τη λειτουργία της μεθόδου. Πρέπει να εκτελούνται τόσες επαναλήψεις ώστε να γίνεται απόδειξη των διακυμάνσεων που οφείλονται στην επανεκκίνηση του PHOENICS αλλά να μην αυξάνεται πολύ ο χρόνος εκτέλεσης.

Το F δεν είναι απλά εκτέλεση του PHOENICS για συγκεκριμένο αριθμό επαναλήψεων αλλά ένα εκτελέσιμο script το οποίο περιλαμβάνει τα εξής στάδια:

1. Αλλαγή του Q1, του αρχείου εισόδου του PHOENICS.
2. Μετάφραση του Q1
3. Γραφή των αρχικών εκτιμήσεων των μεταβλητών σε κατάλληλη μορφή για το PHOENICS
4. Εκτέλεση του PHOENICS
5. Ανάγνωση και γραφή των μεταβλητών σε κατάλληλη μορφή για την RPM

Σχετικά με τα βήματα 3 και 5 διευκρινίζονται τα εξής: Ο PHOENICS εκτελεί υπολογισμούς για την αρχική μορφή των μεταβλητών, χωρίς να κάνει αδιαστατοποίηση. Αντιθέτως οι πράξεις που αφορούν την RPM γίνονται με το διάνυσμα των αδιαστατοποιημένων μεταβλητών συνεπώς πρέπει να γίνεται η αδιαστατοποίηση από τον ίδιο το χρήστη αφού γίνει ανάγνωση των μεταβλητών από το αρχείο εξόδου του PHOENICS.

Το φυσικό πρόβλημα στο οποίο εφαρμόστηκε η προτεινόμενη μέθοδος αφορά έναν κατακόρυφο αντιδραστήρα χημικής απόθεσης από ατμό που παρουσιάζεται παρακάτω.

4.1.4 Το φυσικό πρόβλημα

Οι αντιδραστήρες χημικής απόθεσης από ατμό ενδιαφέρουν τη βιομηχανία ημιαγωγών για τη δημιουργία λεπτών υμενίων σε υποστρώματα πυριτιών. Η απόθεση γίνεται από ένα κρύο μίγμα αντιδρώντων το οποίο προσκρούει κάθετα στο θερμαινόμενο υπόστρωμα όπου εναποτίθεται το λεπτό υμένιο. Ο «ανταγωνισμός» της βεβιασμένης συναγωγής, λόγω της ροής εισόδου στον αντιδραστήρα με την ελεύθερη συναγωγή λόγω της βαθμίδας θερμοκρασίας οδηγεί σε πολλαπλότητα λύσεων για δεδομένη τιμή μιας φυσικής παραμέτρου [Fotiadis, 1990a, 1990b; Jensen et al., 1991; van Santen et al., 2001]. Αυτό δεν είναι επιθυμητό στη βιομηχανική λειτουργία του αντιδραστήρα γιατί επηρεάζει την ποιότητα του υμενίου και συνεπώς είναι σημαντικό η αριθμητική προσομοίωση του αντιδραστήρα να παρέχει πληροφορίες για την ύπαρξη περιοχών με πολλαπλότητα λύσεων.

Η συγκεκριμένη γεωμετρία που μελετάται είναι ο πρότυπος αντιδραστήρας χημικής απόθεσης από ατμό που δίνεται στο Σχήμα 4.4 [van Santen et al., 2001].
Σχήμα 4.4 Κατακόρυφη τομή του αντιδραστήρα χημικής απόθεσης από ατμό

Το μήγα των αερίων εισάγεται στον αντιδραστήρα σε θερμοκρασία περιβάλλοντος μέσω ενός μεγάλου κατακόρυφου σωλήνα εισόδου που βρίσκεται τοποθετημένος κάθετα προς το οριζόντιο θερμαινόμενο υπόστρωμα. Οι διαστάσεις του αντιδραστήρα δίνονται στο Σχήμα 4.4.

Η λειτουργία του αντιδραστήρα περιγράφεται από τη ροή των αερίων και τη μεταφορά ενέργειας και χημικών συστατικών. Το μοντέλο που μελετήθηκε στην παρούσα εργασία δε λαμβάνει υπόψη τη διάχυση των συστατικών και τη χημική αντίδραση. Οι εξισώσεις συνέχειας, μεταφοράς ορμής και ενέργειας διατυπώνονται αδιαστατοποιημένες ως εξής:

\[\nabla \cdot (\rho \nabla V) = 0 \quad (4.10) \]

\[\nabla \cdot (\rho \nabla V) = \frac{1}{Re} V \left(\mu (\nabla V + (\nabla V)^T) - \frac{2}{3} \mu (\nabla \cdot V) \cdot I \right) - \nabla P - \frac{Gr}{Re^2} \left(\frac{T - \frac{1}{2}}{T - \frac{1}{2}} \frac{Ga + 1}{1} \right) e_z \quad (4.11) \]

\[C_p \nabla \cdot (\rho VT) = \frac{1}{Re \cdot Pr} \nabla \cdot (\lambda VT) \quad (4.12) \]

Οι μεταβλητές που εμφανίζονται στις παραπάνω εξισώσεις ορίζονται ως εξής:

\[V = \frac{\hat{V}}{V_{av}} \quad T = \frac{\hat{T} - T_{wall}}{T_{wafer} - T_{wall}} \quad P = \frac{\hat{P}}{\rho_{ref} \cdot V^2} \quad \nabla = L \hat{V} \]

\[\rho = \frac{\hat{\rho}}{\rho_{ref}} \quad \mu = \frac{\hat{\mu}}{\mu_{ref}} \quad \lambda = \frac{\hat{\lambda}}{\lambda_{ref}} \quad C_p = \frac{\hat{C}_p}{C_{p,ref}} \]

Εδώ τα \(V, T \) και \(P \) συμβολίζουν την αδιάστατη ταχύτητα, θερμοκρασία και πίεση αντίστοιχα ενώ τα \(\rho, \mu, \lambda \) και \(C_p \) είναι η αδιάστατη πυκνότητα, ιξώδες, θερμική
αγωγιμότητα και ειδική θερμότητα του αερίου αντίστοιχα. Οι μεταβλητές με το σύμβολο ϕ είναι αντίστοιχες μεταβλητές πριν την αδιαστατοποίηση. Ολες οι ιδιότητες αναφοράς έχουν υπολογιστεί σε μια μέση θερμοκρασία αερίου που δίνεται από τον τύπο $T_{\text{ref}} = \frac{1}{2} \left(T_{\text{wafer}} + T_{\text{wall}} \right)$. L είναι η χαρακτηριστική διάσταση του αντιδραστήρα που επιλέχθηκε να είναι η ακτίνα του κατακόρυφου σωλήνα εισόδου και V_{av} είναι η μέση ταχύτητα υπολογισμένη σε αυτόν το σωλήνα.

Οι συνοριακές συνθήκες που χρησιμοποιούνται είναι:

Στην είσοδο του αντιδραστήρα:

$$V = V_{m}, \ T = 0$$

(4.13)

Στην έξοδο του αντιδραστήρα:

$$\frac{\partial V_n}{\partial n} = 0, \ \frac{\partial T}{\partial n} = 0$$

(4.14)

όπου η είναι η κατακόρυφη διεύθυνση και V_n είναι η αντίστοιχη συνιστώσα της ταχύτητας.

Στα τοιχώματα του αντιδραστήρα:

$$V = 0, \ T = 0$$

(4.15)

Στην επιφάνεια του υποστρώματος:

$$V = 0, \ T = 1$$

(4.16)

Το πεδίο ροής και θερμοκρασίας εξαρτάται από διάφορους παράγοντες όπως οι θερμοκρασίες των τοιχώματών του αντιδραστήρα και του υποστρώματος, ο τύπος του αερίου, η πιεση και ο ρυθμός εισόδου των αερίων. Η επιδράση όλων αυτών μελετάται μέσω τεσσάρων ανισότατων αριθμών, του αριθμού Reynolds (Re), Grashof (Gr), Prandtl (Pr) και Gay-Loussac (Ga):

$$Re = \frac{\rho_{\text{ref}} V_{\text{ref}} L}{\mu_{\text{ref}}} \quad Gr = \frac{g \rho_{\text{ref}}^2 L^3 (T_{\text{wafer}} - T_{\text{wall}})}{\mu_{\text{ref}}^2 T_{\text{ref}}} \quad Pr = \frac{\mu_{\text{ref}} C_{p,\text{ref}}}{\lambda_{\text{ref}}} \quad Ga = \frac{T_{\text{wafer}} - T_{\text{wall}}}{T_{\text{ref}}}$$

Στην παρούσα εφαρμογή η φυσική παράμετρος που επιλέγεται για να γίνει βηματισμός είναι o αριθμός Reynolds. Η μεταβολή του Reynolds γίνεται με μεταβολή της τάσης του αερίου μήκους στον αντιδραστήρα. Οι υπόλοιπες παράμετροι έχουν σταθερές τιμές, $Ga=0.8, \ Pr=0.34$ και $Gr=930$. Το εισερχόμενο αέριο αποτελείται από καθαρό άζωτο και εισέρχεται στον αντιδραστήρα με ρυθμό 1.85 slm στους 300 K. Η θερμοκρασία του υποστρώματος είναι 700 K ενώ τα τοιχώματα του αντιδραστήρα διατηρούνται στους 300K. Η συνολική πιεση στον αντιδραστήρα είναι 1.3 kPa. Οι εξισώσεις που περιγράφουν το φυσικό φαινόμενο διακρίτοποιούνται σε πλέγμα δύο διαστάσεων που αποτελείται από 3220 κόμβους. Επειδή το πρόβλημα είναι συμμετρικό ως προς άξονα κάθετο στο υπόστρωμα, επιλύεται το πρόβλημα στο μισό υπολογιστικό χωρίο για οικονομία τόσο σε μήκη όσο και σε υπολογισμό. Το υπολογιστικό πλέγμα είναι πιο πυκνό κοντά στα τοιχώματα και το υπόστρωμα γιατί εκεί ναρκίζουν οι μεγαλύτερες βαθμίδες θερμοκρασίας και ταχύτητας.
Στο Σχήμα 4.5 απεικονίζεται ο τοπικός αριθμός Nusselt, \(Nu = \left(\frac{\partial T}{\partial z} \right)_{\gamma} \), στο κέντρο του υποστρώματος για διάφορες τιμές του αριθμού Reynolds.

Η αλληλεπίδραση του όρου συναγωγής στην εξίσωση διατήρησης ενέργειας και του όρου βαρύτητας στην εξίσωση διατήρησης ορμής οδηγεί στην εμφάνιση σημείων στροφής για Re = 4.728 και Re = 3.315, με αποτέλεσμα την παρουσία πολλαπλών μονίμων καταστάσεων, για δεδομένες τιμές του αριθμού Reynolds.

Σχήμα 4.5 Τοπικός αριθμός Nusselt στο κέντρο του υποστρώματος συναρτήσει του αριθμού Reynolds.

Στα σημεία στροφής γίνεται εναλλαγή της ευστάθειας, έτσι στον κατώτερο κλάδο (βλ. Σχήμα 4.5) οι μόνιμες καταστάσεις είναι ευστάθεις, μετά το πρώτο σημείο στροφής ο κλάδος αποτελείται από ασταθείς μόνιμες καταστάσεις ενώ στον πάνω κλάδο γίνεται ανάκτηση της ευστάθειας.

Για το εύρος των αριθμών Reynolds για το οποίο συνυπάρχουν οι τρεις κλάδοι λύσεων είναι δυνατόν να επιτευχθεί σύγκλιση σε οποιοδήποτε από τις ευστάθεις μόνιμες καταστάσεις ανάλογα με την αρχική εκτίμηση των υπολογιζόμενων μεταβλητών. Η φυσική σημασία της πολλαπλότητας των λύσεων έχει να κάνει με τον ανταγωνισμό των δύο μηχανισμών μεταφοράς: της φυσικής συναγωγής λόγω άνωσης και της εξαναγκασμένης συναγωγής λόγω της εισόδου του ρεύματος αερίων στον αντιδραστήρα. Στο Σχήμα 4.6 δίνονται οι ροίκες γραμμές και οι ισοψήφες θερμοκρασίες για Re = 4.32 στους δύο κλάδους ευσταθών λύσεων που δίνονται στο Σχήμα 4.5. Στον κάτω κλάδο λύσεων, το κυρίαρχο φαινόμενο είναι η φυσική συναγωγή που προκαλείται από την έντονη θερμοκρασιακή διαφορά μεταξύ του υποστρώματος και του αερίου.

74
Σχήμα 4.6 Δύο λύσεις για Re=4.32 (a) Στον κάτω ευσταθή κλάδο, (b) Στον πάνω ευσταθή κλάδο. Στο αριστερό μέρος κάθε σχήματος δίνονται οι ροικες γραμμές ενώ στο δεξιά οι ισοψεις θερμοκρασίας. Κάθε γραμμή αντιστοιχεί σε θερμοκρασιακή διαφορά 50 βαθμών ξεκινώντας από 700K στο υπόστρωμα και φτάνοντας τους 300K κοντά στα τοιχώματα.

Για μικρούς αριθμούς Reynolds, δηλαδή για μικρή ταχύτητα εισόδου του αερίου στον αντιδραστήρα, οι δυνάμεις άνωσης που αναπτύσσονται παίζουν σημαντικό ρόλο στη διαμόρφωση της ροής, οδηγώντας στη δημιουργία μιας μεγάλης ζόνης ανακυκλοφορίας που καταλαμβάνει σχεδόν όλο τον αντιδραστήρα (βλ. Σχήμα 4.6). Καθώς όμως η ταχύτητα εισόδου μεγαλώνει και αυξάνει ο αριθμός Reynolds, η εξαναγκασμένη συναγωγή γίνεται σημαντική σε σχέση με την άνωση, παίζοντας έτσι ρυθμιστικό ρόλο στη διαμόρφωση της ροής. Η ζόνη ανακυκλοφορίας τώρα υπάρχει αλλά είναι μετατοπισμένη μακριά από το υπόστρωμα. Οι μόνιμες καταστάσεις που απαρτίζουν τον πάνω κλάδο λύσεων στο Σχήμα 4.5 αντιστοιχούν σε συνθήκες ροής ελεγχόμενες από την εξαναγκασμένη συναγωγή. Για τις συγκεκριμένες λύσεις, στο Σχήμα 4.7 δίνεται ο τοπικός αριθμός Nusselt κατά μήκος της ακτίνας του υποστρώματος.
Από τα σχήματα αυτά φαίνεται ότι στις λύσεις που ανήκουν στον πάνω κλάδο όπου η εξαναγκασμένη συναγωγή είναι το κυρίαρχο φαινόμενο, η ταχύτητα του αερίου είναι πιο μεγάλη κοντά στο κέντρο του υποστρώματος απ’ ότι στις λύσεις του κάτω κλάδου. Αυτό έχει σαν αποτέλεσμα να είναι μεγαλύτεροι οι ρυθμοί μεταφοράς θερμότητας στο σημείο αυτό όπου φαίνεται στο Σχήμα 4.7.

Σχήμα 4.7 Αριθμός Nusselt κατά μήκος της επιφάνειας του υποστρώματος.

4.1.5 Ανάλυση ευστάθειας με την RPM

Καθώς ο βηματισμός προχωράει στον κάτω κλάδο λύσεων, δημιουργείται μια ορθοκανονική βάση, Ζ ∈ ℜN×m του υπόχωρου που αντιστοιχεί στις πιο επικίνδυνες ιδιοτιμές της ιακωβιανής ΖU ∈ ℜN×N της επαναληπτικής διαδικασίας Ζ που δίνεται στη σχέση (1). Ο υπολογισμός της βάσης ξεκινάει σε μια συγκεκριμένη τιμή του αριθμού Reynolds, Re=2.88, για την οποία ο κώδικας φτάνει στο προκαθορισμένο ανώτατο όριο επαναλήψεων που είναι nmax = 13. Η διάσταση της βάσης είναι m=2 και ανανεώνεται όποτε είναι απαραίτητο κατά τη διάρκεια του βηματισμού.
Πίνακας 4.1 Μεγαλύτερη ιδιοτιμή του πίνακα H σε διάφορες τιμές του αριθμού Reynolds στον κάτω ευσταθή κλάδο λύσεων.

<table>
<thead>
<tr>
<th>Re</th>
<th>μεγαλύτερη ιδιοτιμή του H</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.88</td>
<td>0.531</td>
</tr>
<tr>
<td>3.15</td>
<td>0.618</td>
</tr>
<tr>
<td>3.55</td>
<td>0.675</td>
</tr>
<tr>
<td>3.87</td>
<td>0.714</td>
</tr>
<tr>
<td>4.13</td>
<td>0.783</td>
</tr>
<tr>
<td>4.25</td>
<td>0.811</td>
</tr>
<tr>
<td>4.38</td>
<td>0.872</td>
</tr>
<tr>
<td>4.45</td>
<td>0.923</td>
</tr>
<tr>
<td>4.51</td>
<td>0.997</td>
</tr>
<tr>
<td>4.62</td>
<td>0.951</td>
</tr>
<tr>
<td>4.71</td>
<td>0.976</td>
</tr>
</tbody>
</table>

Η ύπαρξη του κρίσιμου σημείου διαπιστώνεται από τις ιδιοτιμές του μικρής διάστασης πίνακα $H = Z^T F_U Z \in \mathbb{R}^{m \times m}$. Όσο ο βηματισμός στην παράμετρο προχωράει και προσεγγίζεται το κρίσιμο σημείο, τόσο η μεγαλύτερη ιδιοτιμή του H πλησίαζε τη μονάδα. Αυτό υποδεικνύει ότι υπάρχει σημείο στροφής το οποίο εμφανίζεται στο σημείο όπου μία πραγματική ιδιοτιμή του H γίνεται ίση με τη μονάδα. Η μεταβολή της μεγαλύτερης ιδιοτιμής του H καθώς προσεγγίζεται το σημείο στροφής καταγράφεται στον Πίνακα 4.1.

Από τα ιδιοδιανύσματα του πίνακα H είναι δυνατόν να προκύψουν τα ιδιοδιανύσματα του μεγάλης διάστασης πίνακα F_U χρησιμοποιώντας τη σχέση αναγωγής $y = Z x$ όπου x είναι το ιδιοδιανύσμα του H, y είναι το αντίστοιχο ιδιοδιανύσμα του F_U και Z είναι η ορθοκανονική βάση του «επικίνδυνου» υπόχωρου που προσεγγίζει η RPM. Δύο ιδιοδιανύσματα του F_U που αντιστοιχούν στη θερμοκρασία σε αριθμό Reynolds $Re = 4.32$ δίνονται στο Σχήμα 4.8.
Σχήμα 4.8 Αναδομημένα ιδιοδιανύσματα (διάστασης N) που προέκυψαν από την RPM για Re = 4.32

Μεταξύ των δύο ευστάθεις κλάδων παρεμβάλλεται ένας κλάδος που αποτελείται από ασταθείς μόνιμες καταστάσεις στον οποίον δεν ήταν δυνατή η σύγκλιση με το πακέτο PHOENICS. Ο κλάδος αυτός έχει βρεθεί από τους van Santen et al. (2001) κάνοντας χρήση ενός κώδικα πεπερασμένων όγκων που έφτιαξαν οι ίδιοι όπου η επίλυση των διακριτοποιημένων εξισώσεων έγινε με τη μέθοδο Newton. Ο βηματισμός πάνω στον κλάδο των ασταθών λύσεων έγινε με εφαρμογή της μεθόδου βηματισμού κατά μήκος τόξου (arc-length continuation) [Bolstad and Keller, 1986].

Η αδυναμία του PHOENICS να συγκλίνει σε ασταθείς μόνιμες καταστάσεις μπορεί να αποδοθεί είτε στον επιλύτη, είτε στη μέθοδο διακριτοποίησης.

Εναλλακτικά με τον SIMPLE χρησιμοποιήθηκε ο multi-grid επιλύτης MIGAL που αναπτύχθηκε από την εταιρεία Arcofluid ειδικά για το πακέτο PHOENICS, ο οποίος επιλέει ταυτόχρονα για όλες τις μεταβλητές σε αντίθεση με τις μεθόδους τύπου SIMPLE. Ο MIGAL χρησιμοποιείται στις εφαρμογές μεγάλης κλίμακας και ελαττώνει σημαντικά το χρόνο υπολογισµού. Παρόλα αυτά η εφαρμογή του δεν επέφερε σύγκλιση πράγμα το οποίο ενισχύει
την άποψη ότι οι μέθοδοι τύπου SIMPLE δεν έχουν ευθύνη άμεσα για την απόκλιση του PHOENICS σε ασταθείς μόνιμες καταστάσεις.

Η πηγή του προβλήματος εστιάζεται στην ακρίβεια της τάξης του σχήματος διακριτοποίησης πεπερασμένων όγκων ελέγχου. Οι πιθανότητες εύρεσης μιας ασταθούς μόνιμης κατάστασης αφορούν με την πύκνωση του πλέγματος διακριτοποίησης. Κάτι τέτοιο όμως αυξάνει πολύ το υπολογιστικό κόστος ακόμα και στην περίπτωση που εφαρμοστεί ο επιλύτης MIGAL. Γενικά για την εύρεση ασταθών μονίμων καταστάσεων οι καταλληλότερες μέθοδοι διακριτοποίησης είναι, ξεκινώντας από την καλύτερη, οι φασματικές μέθοδοι, οι μέθοδοι φασματικών στοιχείων, οι μέθοδοι ερμητικών πεπερασμένων διαφορών (5ης τάξης), η μέθοδος πεπερασμένων στοιχείων με διονυσικές συναρτήσεις βάσεως, η μέθοδος πεπερασμένων διαφορών δεύτερης τάξης, η μέθοδος πεπερασμένων όγκων δεύτερης τάξης και τέλος η μέθοδος πεπερασμένων όγκων πρώτης τάξης [J. Ouazzani, personal communication 2003].

4.2 Υπολογισμός ασταθών λύσεων μόνιμης κατάστασης

Στο πλαίσιο της συστημικής ανάλυσης του μοντέλου αντιδραστήρα χημικής απόθεσης από ατμο απότερος στόχος είναι ο εντοπισμός των περιοχών ευσταθούς και ασταθούς λειτουργίας αντιδραστήρα. Τα αποτελέσματα που παρουσιάστηκαν παραπάνω, αφορούσαν στην επιτυχή διασύνδεση ενός κώδικα που δρα σαν κέλυφος με τον εμπορικό κώδικα υπολογιτικής ρευστομηχανικής (CFD) PHOENICS. Το φυσικό πρόβλημα το οποίο αντιμετωπίστηκε αφορούσε σε έναν πρότυπο αντιδραστήρα ΧΑΑ ενώ ο κώδικας κέλυφος βασίζεται στη μέθοδο Αναδρομικής Προβολής (Recurrent Projection Method, RPM).

Όπως προκύπτει από το Σχήμα 4.5 δεν ήταν δυνατή η σύγκλιση σε ασταθείς λύσεις με πιθανή αιτία τη χαμηλή τάξης ακρίβεια του σχήματος διακριτοποίησης πεπερασμένων όγκων. Παρακάτω παρουσιάζονται τα αποτελέσματα εφαρμογής της ίδιας μεθόδου διακριτοποίησης σε ένα πιο απλοποιημένο πρόβλημα, για την εύρεση κλάδων ασταθών λύσεων. Το απλοποιημένο πρόβλημα – π.χ. μονο- ή δι-διάστατο αντί για τρι-διάστατο ολλά με “ενεργούς” τους σημαντικούς μη γραμμικούς όρους – διευκολύνει σημαντικά την
εφαρμογή/δοκιμή νέων μεθόδων, με σκοπό τον υπολογισμό ασταθών λύσεων μόνιμης κατάστασης, επειδή οι υπολογισμοί παύουν να είναι ιδιαίτερα χρονοβόροι. Πρόκειται για ένα μοντέλο που περιγράφει τη λειτουργία ενός αυλωτού αντιδραστήρα. Τα αποτελέσματα αναδεικνύουν τη σημαντική εξάρτηση που έχει η σύγκλιση από το σχήμα διακριτοποίησης των εξισώσεων.

4.2.1 Το μαθηματικό μοντέλο

Το φυσικό πρόβλημα ενδιαφέροντος στην παρούσα εργασία είναι ο αυλωτός χημικός αντιδραστήρας. Οι αυλωτοί αντιδραστήρες μπορεί να είναι, είτε πληρωμένοι με στερεά καταλυτικά σωματίδια, με τη βοήθεια των οποίων λαμβάνει χώρα η επιθυμητή αντίδραση, όποτε πρόκειται για αυλωτούς αντιδραστήρες σταθεροποιημένης κλίνης, είτε μη πληρωμένοι με καταλύτη. Στο σχήμα 4.9 που ακολουθεί, απεικονίζεται ένας αυλωτός αντιδραστήρας.

Σχήμα 4.9 Αυλωτός αντιδραστήρας

Οι περίπλοκες διεργασίες μεταφοράς και αντίδρασης, που λαμβάνουν χώρα σε έναν αυλωτό αντιδραστήρα, επιτρέπουν τη χρήση διαφόρων επιπέδων πολυπλοκότητας στη μαθηματική μοντέλοποιησή, η οποία είναι απαραίτητη για το σχεδιασμό και τη βελτιστοποίηση αυτού. Το μαθηματικό μοντέλο που μελετάται στην παρούσα εργασία είναι αυτό της ψεύδο-ομογενούς αξονικής διάχυσης, το οποίο, στην περίπτωση μίας, μη αναστρέψιμης, αντίδρασης πρώτης τάξης, περιλαμβάνει δύο συζευγμένες, μη γραμμικές, μερικές διαφορικές εξισώσεις, μία για τη διατήρηση του αντιδρώντος και μία για τη διατήρηση της θερμοκρασίας. Οι δύο άγνωστοι των εξισώσεων είναι η συγκέντρωση και η θερμοκρασία. Οι δύο εξισώσεις είναι οι ακόλουθες (Jensen & Ray, 1982):

- Εξίσωση διατήρησης μάζας:

 \[
 \varepsilon_p \frac{\partial c(z',t')}{\partial t'} = D_z \frac{\partial^2 c(z',t')}{\partial z'^2} - \nu_z \frac{\partial c(z',t')}{\partial z'} - k_v (1 - \varepsilon_p) c(z',t') \exp \left(\frac{-E_i}{RT(z',t')} \right)
 \]

(4.17)
• Εξίσωση διατήρησης ενέργειας:

\[
\left(e_p \rho_f C_{pf} + (1 - e_p) \rho_s C_{ps} \right) \frac{\partial T(z',t')}{\partial t'} = k_l \frac{\partial^2 T(z',t')}{\partial z'^2} - \rho_f C_{pf} \rho_s \frac{\partial T(z',t')}{\partial z'} + \\
+ (1 - e_p) (-\Delta H) k_0 c(z',t') \exp \left(\frac{-E_a}{RT(z',t')} \right) - \frac{4}{d_e} U_w \left(T(z',t') - T_w(z',t') \right).
\] (4.18)

Οι αρχικές συνθήκες για τις δύο εξισώσεις είναι οι ακόλουθες:

• Για την εξίσωση διατήρησης μάζας:

\[c(z',0) = c_n(z') \] (4.19)

• Για την εξίσωση διατήρησης ενέργειας:

\[T(z',0) = T_n(z') \] (4.20)

Οι συνοριακές συνθήκες για τις δύο εξισώσεις είναι οι ακόλουθες:

• Για την εξίσωση διατήρησης μάζας:

\[-D_z \frac{\partial c(z',t')}{\partial z'} \bigg|_0 = v_z (c_0(t') - c(0,t')) \] (4.21)

\[-D_z \frac{\partial c(z',t')}{\partial z'} \bigg|_0 = v_z (c_0(t') - c(0,t')) \]

• Για την εξίσωση διατήρησης ενέργειας:

\[-k_l \frac{\partial T(z',t')}{\partial z'} \bigg|_0 = v_z \rho_f C_{pf} (T_0(t') - T(0,t')) \] (4.22)

\[\frac{\partial T(z',t')}{\partial z'} \bigg|_0 = 0 \]
Τα λατινικά και ελληνικά σύμβολα, που περιλαμβάνονται στις δύο εξισώσεις και στις αρχικές και συνοριακές συνθήκες, επεξηγούνται ως ακολούθως:

- **Λατινικοί χαρακτήρες:**

 \[c \] συγκέντρωση

 \[c_0 \] συγκέντρωση τροφοδοσίας

 \[C_{pf} \] θερμοχωρητικότητα της υγρής φάσης

 \[C_{ps} \] θερμοχωρητικότητα της στερεής φάσης

 \[d_r \] διάμετρος του αντιδραστήρα

 \[D_L \] συντελεστής αξονικής διάχυσης

 \[E_A \] ενέργεια ενεργοποίησης

 \[\Delta H \] ενθαλπία της αντίδρασης

 \[k_o \] προεκθετικός παράγον

 \[k_L \] αξονική θερμική αγωγή

 \[R \] παγκόσμια σταθερά των αερίων

 \[t' \] χρόνος

 \[T \] θερμοκρασία

 \[T_w \] θερμοκρασία τοιχώματος

 \[T_0 \] θερμοκρασία τροφοδοσίας

 \[U_w \] συντελεστής μεταφοράς θερμότητας

 \[\nu_z \] γραμμική ταχύτητα αερίου

 \[z' \] αξονική συντεταγμένη.

- **Ελληνικοί χαρακτήρες:**

 \[\epsilon_p \] πορώδες της κλίνης

 \[\rho_f \] πυκνότητα της υγρής φάσης

 \[\rho_s \] πυκνότητα της στερεής φάσης.
4.2.2 Αδιαστατοποίηση του μαθηματικού μοντέλου

Η εξίσωση διατήρησης μάζας, εξίσωση (4.17), και η εξίσωση διατήρησης ενέργειας, εξίσωση (4.2), αδιαστατοποιούνται κάνοντας χρήση των ακόλουθων αδιάστατων μεγεθών:

- Μετατροπή:

\[x_1 = \frac{c - c_0}{c_0} \]

(4.23)

- Αδιαστατοποιμένη θερμοκρασία:

\[x_2 = \left(\frac{T - T_0}{T_0} \right) \frac{E_A}{RT_0} \]

(4.24)

- Αδιαστατοποιμένη θερμοκρασία τοιχώματος:

\[x_{2w} = \left(\frac{T_{w} - T_0}{T_0} \right) \frac{E_A}{RT_0} \]

(4.25)

- Αδιαστατοποιμένη ενέργεια ενεργοποίησης:

\[\gamma = \frac{E_A}{RT_0} \]

(4.26)

- Αδιαστατοποιμένος χρόνος:

\[t = \frac{t' \nu_s}{\varepsilon_p l} \]

(4.27)

- Αδιαστατοποιμένη αξονική συντεταγμένη:

\[z = \frac{z'}{l} \]

(4.28)

- Αριθμός Peclet για τη μεταφορά μάζας:

\[Pe_1 = \frac{\nu l}{D} \]

(4.29)

- Αριθμός Peclet για τη μεταφορά θερμότητας:
Ωστόσο, οι συνοριακές συνθήκες, σχέσεις (4.21) και (4.22), λαμβάνουν την ακόλουθη αδιάστατη μορφή:

• Για την εξίσωση διατήρησης μάζας:

\[
\frac{\partial x_1}{\partial t} = Pe_1^{-1} \frac{\partial^2 x_1}{\partial z^2} - \frac{\partial x_1}{\partial z} + Da \left(1 - x_1\right) \exp \left(\frac{x_2}{1 + x_2 / \gamma}\right)
\]

(4.35)

• Για την εξίσωση διατήρησης ενέργειας:

\[
Le \frac{\partial x_2}{\partial t} = Pe_2^{-1} \frac{\partial^2 x_2}{\partial z^2} - \frac{\partial x_2}{\partial z} - \beta x_2 + BDa \left(1 - x_1\right) \exp \left(\frac{x_2}{1 + x_2 / \gamma}\right) + \beta x_{2w}
\]

(4.36)

Επίσης, οι εξισώσεις διατήρησης μάζας και ενέργειας έχουν ως αγνώστους, μετά την αδιαστατοποίηση τους, τη μετατροπή και την αδιαστατοποιημένη θερμοκρασία αντίστοιχα και λαμβάνουν την ακόλουθη μορφή:

• Εξίσωση διατήρησης μάζας:

\[
P e_1 = \frac{\nu_1 \rho_1 C_{pf}}{k_L}
\]

(4.30)

• Αριθμός Damköhler:

\[
Da = \frac{l(1 - \rho_p)k_0 e^{-\gamma}}{\nu_z}
\]

(4.31)

• Αδιαστατοποιημένη αδιαβατική αύξηση της θερμοκρασίας:

\[
B = \left(-\Delta H\right)\epsilon_0 \gamma
\]

(4.32)

• Αδιάστατος συντελεστής μεταφοράς θερμότητας:

\[
\beta = \frac{4l U_w}{\nu_z d, \rho_1 C_{pf}}
\]

(4.33)

• Αριθμός Lewis:

\[
Le = \frac{\epsilon_p \rho_1 C_{pf} + \left(1 - \epsilon_p\right) \rho_s C_{ps}}{\rho_1 C_{pf} \epsilon_p}
\]

(4.34)
• Για την εξίσωση διατήρησης μάζας:

\[\frac{\partial x_1}{\partial x} = 0 \]

• Για την εξίσωση διατήρησης ενέργειας:

\[\frac{\partial x_1}{\partial z} = 0 \]
\[\frac{\partial x_2}{\partial z} = Pe_2 x_2 \]

\[\frac{\partial x_1}{\partial z} = 0 \]

(4.38)

Στην εξίσωση (4.36) ο αριθμός Lewis, Le, ο οποίος είναι λόγος θερμοχωρητικοτήτων, θα εκληφθεί ίσος με τη μονάδα, γεγονός το οποίο ισχύει στην περίπτωση μη πληρωμένων αυλώντων αντιδραστήρων. Στην περίπτωση αυτή μάλιστα ισχύει και ότι: \(Pe_1 \equiv Pe_2 \). Επιπλέον, η αδιαστατοποιημένη θερμοκρασία τοιχώματος, \(x_{2w} \), θα εκληφθεί ίση με το μηδέν. Επομένως, οι δύο εξισώσεις, στην αδιάστατη μορφή που θα χρησιμοποιηθούν στην παρούσα εργασία, έχουν ως εξής:

• Εξίσωση διατήρησης μάζας:

\[\frac{\partial x_1}{\partial t} = Pe_1^{-1} \frac{\partial^2 x_1}{\partial z^2} - \frac{\partial x_1}{\partial z} + Da(1 - x_1) \exp \left(\frac{x_1}{1 + x_2 / \gamma} \right) \]

(4.39)

• Εξίσωση διατήρησης ενέργειας:

\[\frac{\partial x_2}{\partial t} = Pe_2^{-1} \frac{\partial^2 x_2}{\partial z^2} - \frac{\partial x_2}{\partial z} - \beta x_2 + B Da(1 - x_1) \exp \left(\frac{x_2}{1 + x_2 / \gamma} \right) \]

(4.40)

Οι συνοριακές συνθήκες σε αδιάστατη μορφή δίνονται από τις σχέσεις (4.37) και (4.38).

Όσον αφορά τις παραμέτρους, που περιέχονται στις εξισώσεις (4.39) και (4.40), αυτές λαμβάνουν στην παρούσα εργασία τις ακόλουθες σταθερές τιμές:

\[Pe_1 = 5, \ Pe_2 = 5, \ \beta = 1.5, \ B = 12 \] \[\gamma = 20 \]

(4.41)

Ο αριθμός Damköhler, \(Da \), είναι η παράμετρος εκείνη, της οποίας η τιμή μεταβάλλεται στην παραμετρική ανάλυση που ακολουθεί.

4.2.3 Μέθοδος επίλυσης των διακριτοποιημένων εξισώσεων

Από τη διακριτοποίηση των διαφορικών μορφών των εξισώσεων διατήρησης μάζας και ενέργειας, σε ένα πλέγμα \(n \) το πλήθος όγκων ελέγχου, προκύπτει ένα σύστημα \(2 \cdot n \) το πλήθος αλγεβρικών εξισώσεων. Από τις \(2 \cdot n \) αλγεβρικές εξισώσεις, οι \(n \) φορούν τη μετατροπή και οι υπόλοιπες \(n \) την αδιαστατοποιημένη θερμοκρασία. Η επίλυση του
συστήματος αυτού θα δώσει τις τιμές της μετατροπής και της αδιαστατοποιμένης θερμοκρασίας στους n κόμβους του πλέγματος.

Προκειμένου να παρουσιαστεί η μορφή του δημιουργούμενου, κατόπιν της διακριτοποίησης, συστήματος αλγεβρικών εξισώσεων, υπενθυμίζονται κατ’ αρχάς οι τελικές, αλγεβρικές μορφές των δύο εξισώσεων διατήρησης, οι οποίες αφορούν τους εσωτερικούς κόμβους:

- Αλγεβρική μορφή της εξίσωσης διατήρησης μάζας:

\[
\left(4Pe_1^{-1} + 2Da\Delta z^2 \exp\left(\frac{x_{2r}^*}{1 + x_{2r}^* / \gamma}\right)\right)x_{1r} =
\]
\[
= \left(2Pe_1^{-1} - \Delta z\right)x_{1r} + \left(2Pe_1^{-1} + \Delta z\right)x_{1r} + 2Da\Delta z^2 \exp\left(\frac{x_{2r}^*}{1 + x_{2r}^* / \gamma}\right)
\]

(4.42)

- Αλγεβρική μορφή της εξίσωσης διατήρησης ενέργειας:

\[
\left(4Pe_2^{-1} + 2\beta\Delta z^2\right)x_{2r} = \left(2Pe_2^{-1} - \Delta z\right)x_{2r} + \left(2Pe_2^{-1} + \Delta z\right)x_{2r} +
\]
\[
+ 2BDa\Delta z^2 \left(1 - x_{1r}^*\right) \exp\left(\frac{x_{2r}^*}{1 + x_{2r}^* / \gamma}\right)
\]

(4.43)

Συμβολίζοντας τους συντελεστές των \(x_{1r}\) και \(x_{1r}\) ως \(a_{1E}\) και \(a_{1W}\) αντιστοίχως, και τον συντελεστή του \(x_{1r}\) ως \(a_{1P}\), η εξίσωση (4.42) μπορεί να γραφεί ως εξής:

\[
a_{1P}x_{1r} = a_{1E}x_{1r} + a_{1W}x_{1r} + S_{1u}
\]

(4.44)

Όμως, συμβολίζοντας τους συντελεστές των \(x_{2r}\) και \(x_{2r}\) ως \(a_{2E}\) και \(a_{2W}\) αντιστοίχως, και τον συντελεστή του \(x_{2r}\) ως \(a_{2P}\), η εξίσωση (4.43) μπορεί να γραφεί ως εξής:

\[
a_{2P}x_{2r} = a_{2E}x_{2r} + a_{2W}x_{2r} + S_{2u}
\]

(4.45)

Όσον αφορά τους δύο συνοριακούς κόμβους, οι εξίσωσεις (4.44) και (4.45) λαμβάνουν γι’ αυτούς τη μορφή:

Κόμβος 1 (είσοδος αντιδραστήρα)

\[
a_{1P}x_{1r} = a_{1E}x_{1r} + S_{1u}
\]

(4.46)

\[
a_{2P}x_{2r} = a_{2E}x_{2r} + S_{2u}
\]

(4.47)

Κόμβος n (έξοδος αντιδραστήρα)

\[
a_{1P}x_{1r} = a_{1W}x_{1r} + S_{1u}
\]

(4.48)
\[a_{2p}x_{2p} = a_{2m}x_{2m} + S_{2u} \]
(4.49)

Τονίζεται, ότι για όλες τις αλγεβρικές εξισώσεις, που αφορούν τη μετατροπή, χρησιμοποιήθηκε ο ίδιος συμβολισμός και ομοίως συνέβη για όλες τις αλγεβρικές εξισώσεις, που αφορούν την αδιαστατοποιημένη θερμοκρασία. Αυτό έγινε για λόγους απλότητας και δεν σημαίνει, ότι και για τις \(n \) αλγεβρικές εξισώσεις, που αφορούν τη μετατροπή, ή και για τις \(n \) αλγεβρικές εξισώσεις, που αφορούν την αδιαστατοποιημένη θερμοκρασία, όλοι οι συντελεστές ή όλοι οι όροι είναι ίδιοι.

Με βάση λοιπόν το συμβολισμό που χρησιμοποιείται στις σχέσεις (4.44) έως (4.49), δίδεται στο σχήμα (4.10) η μορφή του δημιουργούμενου συστήματος των \(2 \cdot n \) το πλήθος αλγεβρικών εξισώσεων.

![Diagram](image_url)

Σχήμα 4.10 Μορφή δημιουργούμενου, κατόπιν της διακριτοποίησης, συστήματος αλγεβρικών εξισώσεων

Παρατηρώντας το σχήμα 4.10 προκύπτουν, για το σύστημα των \(2 \cdot n \) το πλήθος αλγεβρικών εξισώσεων, τα ακόλουθα:

- Το σύστημα είναι της μορφής \(A \cdot x = b \).
- Ο πίνακας \(A \) του συστήματος είναι διαστάσεων \((2 \cdot n) \times (2 \cdot n) \).
- Ο πίνακας \(\bar{A} \) του συστήματος είναι τριδιαγώνιος.
- Το άνω αριστερό τεταρτημόριο του πίνακα \(\bar{A} \) περιλαμβάνει τους συντελεστές των αλγεβρικών εξισώσεων που αφορούν τη μετατροπή.
- Το κάτω δεξιό τεταρτημόριο του πίνακα \(\bar{A} \) περιλαμβάνει τους συντελεστές των αλγεβρικών εξισώσεων που αφορούν την αδιαστατοποιημένη θερμοκρασία.
Με δεδομένη πλέον τη μορφή του δημιουργούμενου από τη διακριτοποίηση συστήματος, ακολουθεί η παρουσίαση της μεθόδου επίλυσης αυτού. Το σύστημα επιλύεται μέσω μίας επαναληπτικής διαδικασίας σταθερού σημείου (fixed-point iteration) της μορφής:

\[
x^{(v+1)} = F \left(x^{(v)}, Da \right)
\]

όπου

\[
x \in \mathbb{R}^{2n} \text{ διάνυσμα που περιέχει τις } n \text{ άγνωστες τιμές της μετατροπής και τις } n \text{ άγνωστες τιμές της αδιαστατοποιημένης θερμοκρασίας.}
\]

\[
Da \text{ η παράμετρος που μεταβάλλεται, η οποία είναι ο αριθμός Damköhler,}
\]

\[
F : \mathbb{R}^{2n}
\to \mathbb{R}^{2n} \text{ γραμμικός τελεστής,}
\]

\[
v \text{ μετρητής των επαναλήψεων.}
\]

Σε μια τέτοια επαναληπτική διαδικασία, κάθε νέα προσέγγιση της λύσης δίδεται ως συνάρτηση της προηγούμενης προσέγγισης. Η επαναληπτική διαδικασία ολοκληρώνεται, δηλαδή επιτυγχάνεται σύγκλιση, όταν η Ευκλείδεια νόρμα του διανύσματος της διαφοράς νέας και προηγούμενης προσέγγισης της λύσης γίνει μικρότερη από ένα προκαθορισμένο όριο \(\varepsilon \) (π.χ. \(\varepsilon = 10^{-5} \)):

\[
\left\| \left(x^{(v+1)} - x^{(v)} \right) \right\|_2 \leq \varepsilon.
\]

\[
(4.51)
\]

4.2.4 Κατανομές μετατροπής και αδιαστατοποιημένης θερμοκρασίας κατά μήκος του αντιδραστήρα

Με χρήση ενός πλέγματος 50 όγκων ελέγχου, υπολογίζονται οι κατανομές της μετατροπής και της αδιαστατοποιημένης θερμοκρασίας κατά μήκος του αντιδραστήρα, για διάφορες τιμές της παραμέτρου \(Da \), δηλαδή του αριθμού Damköhler. Συγκεκριμένα, στα σχήματα 4.11 και 4.12 εικονίζονται οι κατανομές της μετατροπής και της αδιαστατοποιημένης θερμοκρασίας αντίστοιχα, κατά μήκος του αντιδραστήρα, για τιμές παραμέτρου \(Da = 0.04 \), \(Da = 0.06 \), \(Da = 0.08 \), \(Da = 0.10 \) και \(Da = 0.12 \).

Από την παρατήρηση των δύο σχημάτων προκύπτει, ότι αυξανομένης της τιμής της παραμέτρου \(Da \), αυξάνονται, τόσο οι τιμές της μετατροπής, όσο και οι τιμές της αδιαστατοποιημένης θερμοκρασίας, σε όλο το μήκος του αντιδραστήρα.
Σχήμα 4.11 Κατανομή της μετατροπής, x_1, κατά μήκος του αντιδραστήρα, z, για πλέγμα 50 όγκων ελέγχου και τιμές παραμέτρου $Da = 0,04$, $Da = 0,06$, $Da = 0,08$, $Da = 0,10$ και $Da = 0,12$.

Σχήμα 4.12 Κατανομή της αδιαστατοποιημένης θερμοκρασίας, x_2, κατά μήκος του αντιδραστήρα, z, για πλέγμα 50 όγκων ελέγχου και τιμές παραμέτρου $Da = 0,04$, $Da = 0,06$, $Da = 0,08$, $Da = 0,10$ και $Da = 0,12$.
4.2.5 Βηματισμός στην παράμετρο

Βηματισμός στην παράμετρο είναι ο υπολογισμός των κατανομών της μετατροπής και της αδιαστατοποιημένης θερμοκρασίας κατά μήκος του αντιδραστήρα για διάφορες τιμές της παραμέτρου Da, οι οποίες τιμές προκύπτουν με σταδιακή αύξηση μιας αρχικά χαμηλής τιμής αυτής. Σε κάθε βήμα εκτελείται επαναληπτική διαδικασία προκειμένου να προκύψει η λύση, η οποία λύση είναι οι κατανομές της μετατροπής και της αδιαστατοποιημένης θερμοκρασίας κατά μήκος του αντιδραστήρα. Η λύση που προκύπτει από την επαναληπτική διαδικασία σε κάθε βήμα, αποτελεί την αρχική εκτίμηση για την εκκίνηση της επαναληπτικής διαδικασίας στο επόμενο βήμα. Ο βηματισμός σταματά αναγκαστικά, όταν δεν είναι πλέον εφικτή η επίπεδη σύγκλιση για κάποια τιμή της μεταβλητής. Στα σχήματα 4.13 και 4.14 εικονίζονται οι τιμές της μετατροπής και της αδιαστατοποιημένης θερμοκρασίας αντίστοιχα, στην έξοδο του αντιδραστήρα, συναρτήσει της παραμέτρου βηματισμού Da.

![Σχήμα 4.13](image.png)

Σχήμα 4.13 Τιμές της μετατροπής, x_1, στην έξοδο του αντιδραστήρα, $z=1$, συναρτήσει της παραμέτρου βηματισμού Da.

Όπως φαίνεται στα σχήματα 4.5 και 4.6 δεν είναι δυνατός ο βηματισμός πέρα από μία τιμή παραμέτρου, την $Da=0,122$. Αυτή είναι η ύπαρξη στο σημείο αυτό ενός σημείου στροφής. Προκειμένου να εξεταστεί η δυνατότητα βηματισμού και πέρα από το σημείο αυτό, εφαρμόζεται ο βηματισμός μήκους τόξου σε συνδυασμό με τη μέθοδο αναδρομικής προβολής, περίπτωση η οποία θα εξεταστεί στο επόμενο κεφάλαιο. Ενδιαφέρον παρουσιάζει και η μεταβολή του αριθμού των επαναλήψεων, που απαιτούνται για την επίπεδη σύγκλιση σε κάθε βήμα, για όλο το εύρος του βηματισμού, βάσει του οποίου προέκυψαν τα αποτελέσματα των σχημάτων 4.13 και 4.14.
Σχήμα 4.14 Τιμές της αδιαστατοποιημένης θερμοκρασίας x_2, στην έξοδο του αντιδραστήρα, $z = 1$, συναρτήσει της παραμέτρου βηματισμού Da.

Στο σχήμα 4.15 εικονίζεται ο αριθμός των επαναλήψεων για επίτευξη σύγκλισης σε κάθε βήμα συναρτήσει της παραμέτρου βηματισμού.

Σχήμα 4.15 Απαιτούμενος αριθμός επαναλήψεων για επίτευξη σύγκλισης σε κάθε τιμή παραμέτρου συναρτήσει αυτής.
Στο σχήμα 4.15 φαίνεται, ότι ο απαιτούμενος αριθμός επαναλήψεων για επίτευξη σύγκλισης σε κάθε τμήμα παραμέτρου διαφορώς αυξάνει, ώστε ο βηματισμός προχωρεί προς το σημείο στροφής. Η αύξηση αυτή είναι σχεδόν κατακόρυφη για τιμές παραμέτρου πολύ κοντινές στο σημείο στροφής.

4.2.6 Επίδραση του τρόπου γραμμικοποίησης των όρων πηγής των εξισώσεων του φυσικού προβλήματος στο βηματισμό στην παράμετρο

Η γραμμικοποιημένη μορφή των όρων πηγής στις εξισώσεις διατήρησης μάζας και ενέργειας.

Όρος πηγής

\[
S = Da \left(1 - x_r^*\right) \exp\left(\frac{x_{2r}^*}{1 + x_{2r}^*/\gamma}\right) \Delta z
\]

(4.52)

- **Τρόπος γραμμικοποίησης**

Με τη βοήθεια της σχέσης:

\[
S = S^* + \left(\frac{dS}{dx_r^*}\right) \left(x_r^* - x_r^{*}\right)
\]

(4.53)

όπου ο αστερίσκος σε κάποιον όρο συμβολίζει εκτίμηση του όρου ή την τιμή του στην περασμένη επανάληψη, όταν βεβαιωθεί έκτελεται μία επαναληπτική διαδικασία προς επίλυση της περιέχουσας τον όρο αυτό εξίσωσης.

- **Γραμμικοποιημένη μορφή**

\[
S = Da \left(1 - x_r^*\right) \exp\left(\frac{x_{2r}^*}{1 + x_{2r}^*/\gamma}\right) \Delta z - Da \exp\left(\frac{x_{2r}^*}{1 + x_{2r}^*/\gamma}\right) \Delta x_r^*
\]

(4.54)

Η σχέση (4.53), βάσει της οποίας γραμμικοποιήθηκε ο όρος πηγής της εξίσωσης διατήρησης μάζας, παριστάνει την εφαπτόμενη της καμπύλης \(S : x_r^* \) στο σημείο \(x_r^{*}\). Δεν χρησιμοποιήθηκε όμως η ανάλογη σχέση και για τη γραμμικοποίηση του όρου πηγής της εξίσωσης διατήρησης ενέργειας. Υπενθυμίζεται ακολούθως ο όρος πηγής της εξίσωσης διατήρησης ενέργειας, ο τρόπος γραμμικοποιήσης του και η γραμμικοποιημένη του μορφή.
• Όρος πηγής

\[S = -\beta x_r \Delta z + BDa(1-x_r) \exp\left(\frac{x_r}{1+x_r} \right) \Delta z \] \hspace{1cm} (4.55)

Τρόπος γραμμικοποίησης

• Γραμμικοποιημένη μορφή

\[S = BDa(1-x_r^*) \exp\left(\frac{x_r^*}{1+x_r^*} \right) \Delta z - \beta \Delta x_r, \] \hspace{1cm} (4.56)

όπου

ο αστερίσκος σε κάποιον όρο συμβολίζει εκτίμηση του όρου ή την τιμή του στην περασμένη επανάληψη, όταν βεβαιώς εκτελείται μία επαναληπτική διαδικασία προς επίλυση της περιέχουσας τον όρο αυτό εξίσωσης.

Βλέποντας τις γραμμικοποιημένες μορφές των όρων πηγής των δύο εξισώσεων, προκύπτει ευκόλως, ότι και οι δύο γραμμικοποιήθηκαν με αρνητική κλίση, ικανοποιώντας έτσι το κριτήριο του Scarborough.

Ενδιαφέρον παρουσιάζουν τα αποτελέσματα του βηματισμού στην παράμετρο, στην περίπτωση όπου ο όρος πηγής της εξίσωσης διατήρησης ενέργειας έχει γραμμικοποιηθεί και αυτός με μία σχέση της μορφής της (4.48). Ακολούθως παρουσιάζονται ο νέος τρόπος γραμμικοποίησης και η νέα γραμμικοποιημένη μορφή του όρου πηγής της εξίσωσης διατήρησης ενέργειας.

• Τρόπος γραμμικοποίησης

Με τη βοήθεια της σχέσης:

\[S = S^* + \left(\frac{dS}{dx_r} \right)^* (x_r - x_r^*) \] \hspace{1cm} (4.57)

όπου ο αστερίσκος σε κάποιον όρο συμβολίζει εκτίμηση του όρου ή την τιμή του στην περασμένη επανάληψη, όταν βεβαιώς εκτελείται μία επαναληπτική διαδικασία προς επίλυση της περιέχουσας τον όρο αυτό εξίσωσης.
• Γραμμικοποιημένη μορφή

\[
S = BDa \left(1 - x_r^*\right) \exp \left(\frac{x_r^*}{1 + x_r^* / \gamma}\right) \Delta z \left(1 - \frac{x_r^*}{1 + x_r^* / \gamma}\right) - \\
\left(\beta \Delta z - BDa \frac{1 - x_r^*}{1 + x_r^* / \gamma}\right) \exp \left(\frac{x_r^*}{1 + x_r^* / \gamma}\right) \Delta z \cdot x_r^*.
\]

(4.58)

Οι παρατηρήσεις, που μπορεί κανείς να κάνει, σχετικά με τη νέα γραμμικοποιημένη μορφή του όρου πηγής της εξίσωσης διατήρησης ενέργειας, είναι οι εξής:

- Η σχέση (4.52), από την οποία προήλθε, παριστάνει την εφαπτόμενη της καμπύλης \(S : x_r^* \) στο σημείο \(x_r^* \).
- Είναι περιπλοκότερη από την παλαιά.
- Δεν είναι απολύτως σίγουρο, ότι έχει αρνητική κλίση για όλες τις τιμές που μπορεί να πάρει η παράμετρος που μεταβάλλεται, δηλαδή ο αριθμός Damköhler (\(D_a \)).

Χρησιμοποιώντας τη σχέση (4.53), οι αλγεβρικές εξισώσεις, που προκύπτουν από τη διακριτοποίηση της διαφορικής μορφής της εξίσωσης διατήρησης ενέργειας, ακολουθώντας τη διαδικασία διακριτοποίησης, είναι οι εξής:

- Για τους εσωτερικούς κόμβους:

\[
\left\{4Pe_{c}^{-1} + 2\beta \Delta z^2 - 2BDa \Delta z^2 \frac{1 - x_r^*}{(1 + x_r^* / \gamma)} \exp \left(\frac{x_r^*}{1 + x_r^* / \gamma}\right)\right\} x_{2r} = \\
\left(2Pe_{c}^{-1} - \Delta z\right)x_{2c} + \left(2Pe_{c}^{-1} + \Delta z\right)x_{2r} + \\
+ 2BDa \Delta z^2 \left(1 - x_r^*\right) \exp \left(\frac{x_r^*}{1 + x_r^* / \gamma}\right) \left(1 - \frac{x_r^*}{1 + x_r^* / \gamma}\right) .
\]

(4.59)

- Για τον 1ο κόμβο:
\[
\left(2Pe_2^{-1} + \Delta z + 2\beta \Delta z^2 - 2BDa\Delta z - \frac{1-x_{1r}^*}{1+x_{2r}^*/\gamma}\right) x_{2r} \exp \left(\frac{x_{2r}^*}{1+x_{2r}^*/\gamma}\right)
\]
\[= \left(2Pe_2^{-1} - \Delta z\right) x_{2r} + 2BDa\Delta z^2 \left(1-x_{1r}^*\right) \exp \left(\frac{x_{2r}^*}{1+x_{2r}^*/\gamma}\right) \left(1 - \frac{x_{2r}^*}{(1+x_{2r}^*/\gamma)^2}\right).\]

(4.60)

- Για το n-οστό κόμβο:

\[
\left(2Pe_2^{-1} + \Delta z + 2\beta \Delta z^2 - 2BDa\Delta z - \frac{1-x_{1r}^*}{1+x_{2r}^*/\gamma}\right) x_{2r} \exp \left(\frac{x_{2r}^*}{1+x_{2r}^*/\gamma}\right)
\]
\[= \left(2Pe_2^{-1} + \Delta z\right) x_{2r} + 2BDa\Delta z^2 \left(1-x_{1r}^*\right) \exp \left(\frac{x_{2r}^*}{1+x_{2r}^*/\gamma}\right) \left(1 - \frac{x_{2r}^*}{(1+x_{2r}^*/\gamma)^2}\right).\]

(4.61)

Δημιουργείται λοιπόν ένα νέο αλγεβρικό σύστημα εξισώσεων, βάσει του οποίου εκτελείται εκ νέου ο βηματισμός στην παράμετρο Da. Στα σχήματα 4.16 και 4.17 εικονίζονται οι τιμές της μετατροπής και της αδιαστατοποιημένης θερμοκρασίας αντίστοιχα, στην έξοδο του αντιδραστήρα, συναρτήσει της παραμέτρου βηματισμού Da.

Σχήμα 4.16 Τιμές της μετατροπής, \(x_1\), στην έξοδο του αντιδραστήρα, \(z=1\), συναρτήσει της παραμέτρου βηματισμού Da.
Σχήμα 4.17 Τιμές της αδιαστατοποιημένης θερμοκρασίας, x_2, στην έξοδο του αντιδραστήρα, $z=1$, συναρτήσει της παραμέτρου βηματισμού Da.

Από την παρατήρηση των σχημάτων 4.16 και 4.17 προκύπτει, ότι ο βηματισμός δεν είναι συνεχής σε όλο το εύρος του, δηλαδή από την αρχή μέχρι και την τιμή παραμέτρου $Da = 0,122$, όπως συνέβαινε στην περίπτωση των σχημάτων 4.13 και 4.14. Αντιθέτως, στην τιμή παραμέτρου $Da = 0,115$ διακόπτεται η συνέχεια και παρατηρείται μεταπήδηση σε μία άλλη περιοχή του κλάδου λύσεων, η οποία είναι περιοχή ασταθών λύσεων. Από το σημείο στη νέα πλέον περιοχή συνεχίζεται ο βηματισμός μέχρι την τιμή παραμέτρου $Da = 0,122$, όπου υπάρχει σημείο στροφής και η επαναληπτική διαδικασία επίλυσης αποκλίνει. Τονίζεται, ότι παρά τη μεταπήδηση, η πορεία μεταβολής της παραμέτρου βηματισμού είναι γνησίως αύξουσα.

4.2.7 Αποτύπωση του κλάδου λύσεων με εφαρμογή της μεθόδου – «κέλυφος»

Στην προηγούμενη έκθεση προοδόθηκε αναλυτικά η μεθόδος «κέλυφος» που εφαρμόζεται για την επίτευξη γρήγορης σύγκλισης κοντά σε κρίσιμα σημεία σαν τα σημεία στροφής που αναφέρθηκαν παραπάνω.

Εφαρμόζοντας βηματισμό μήκους τόξου σε συνδυασμό με τη μέθοδο αναδρομικής προβολής για την επίλυση του συστήματος των αλγεβρικών εξισώσεων, το οποίο προέκυψε από τη διακριτοποίηση των εξισώσεων διατήρησης μάζας και ενέργειας, οι οποίες περιγράφουν το φυσικό πρόβλημα που μελετάται στην παρούσα εργασία, καθίσταται δυνατός ο υπολογισμός
δύο πλήρων κλάδων λύσεων. Ένας προκύπτει από την απεικόνιση της μετατροπής στην έξοδο του αντιδραστήρα συναρτήσει της παραμέτρου βηματισμού, που είναι ο αριθμός Damköhler, και ένας από την απεικόνιση της αδιαστατοποιημένης θερμοκρασίας στην έξοδο του αντιδραστήρα συναρτήσει του αριθμού Damköhler. Οι δύο κλάδοι εμφανίζουν δύο σημεία στροφής και ένα σημείο Hopf. Στα σχήματα 4.18 και 4.19 παρουσιάζονται οι δύο κλάδοι, ο κλάδος για τη μετατροπή και ο κλάδος για την αδιαστατοποιημένη θερμοκρασία αντίστοιχα.

Σχήμα 4.18 Μετατροπή στην έξοδο του αντιδραστήρα, \(x_1(z=1) \), συναρτήσει της παραμέτρου βηματισμού, \(Da \).
Σχήμα 4.19 Αδιαστατοποιημένη θερμοκρασία στην έξοδο του αντιδραστήρα, \(x_2 \ (z = 1) \), συναρτήσει της παραμέτρου βηματισμού, \(Da \).

Στα σχήματα 4.18 και 4.19 τα δύο σημεία στροφής, που εμφανίζονται κατά μήκος κάθε κλάδου λύσεων, επισημαίνονται με δύο κύκλους, ενώ το σημείο Hopf επισημαίνεται με ένα τετράγωνο. Το πρώτο σημείο στροφής εμφανίζεται για τιμή παραμέτρου \(Da \approx 0.122 \), ενώ το δεύτερο σημείο στροφής εμφανίζεται για τιμή παραμέτρου \(Da \approx 0.110 \). Το σημείο Hopf εμφανίζεται σχεδόν αμέσως μετά το δεύτερο σημείο στροφής και συγκεκριμένα για τιμή παραμέτρου \(Da \approx 0.111 \).

Όσον αφορά την εναλλαγή ευστάθειας κατά μήκος των δύο κλάδων, ισχύουν τα εξής:

- Από την αρχή του βηματισμού μέχρι το πρώτο σημείο στροφής οι λύσεις είναι ευσταθείς.
- Από το πρώτο σημείο στροφής μέχρι το δεύτερο οι λύσεις είναι αστάθεις.

Τα παραπάνω δύο συμπεράσματα προκύπτουν και από τη σειρά σχημάτων, που παρουσιάζεται ακολούθως, και στην οποία φαίνεται η εξέλιξη των ιδιοτιμών, του Ιακωβιανού πίνακα της επαναλητικής διαδικασίας επίλυσης, κατά μήκος ενός ολόκληρου κλάδου λύσεων, και συγκεκριμένα του κλάδου που προκύπτει από τιμές της μετατροπής. Σε όλα τα σχήματα το ‘x’ δηλώνει τη θέση πάνω στον κλάδο λύσεων και το χρωματισμένο ‘ο’ τη θέση των ιδιοτιμών ως προς το μοναδιαίο κύκλο.
Σχήμα 4.20 Μακριά από το 1ο σημείο στροφής. Όλες οι ιδιοτιμές του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης μικρότερες της μονάδος. Ευσταθής περιοχή του κλάδου λύσεων.

Σχήμα 4.21 Λίγο πριν το 1ο σημείο στροφής. Μία ιδιοτιμή του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης πλησιάζει τα όρια του μοναδιαίου κύκλου. Ευσταθής περιοχή του κλάδου λύσεων.
Σχήμα 4.22 Αμέσως μετά το 1ο σημείο στροφής. Μία ιδιοτιμή του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης μεγαλύτερη της μονάδος. Ασταθής περιοχή του κλάδου λύσεων.

Σχήμα 4.23 Λίγο πριν το 2ο σημείο στροφής. Μία δεύτερη ιδιοτιμή του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης πλησιάζει τα όρια του μοναδιαίου κύκλου, πέραν της μίας που είναι ήδη μεγαλύτερη της μονάδος. Ασταθής περιοχή του κλάδου λύσεων.

Από την παρατήρηση των σχημάτων 4.22 και 4.23 καθίσταται εμφανές αυτό που εξ’ αρχής αποτελούσε στόχο προς διερεύνηση, ότι δηλαδή ένα μή γραμμικό πρόβλημα διαφορικών εξισώσεων, διακριτοποιημένο με τη μέθοδο των πεπερασμένων όγκων ελέγχου και επιλυόμενο με μία επαναληπτική διαδικασία σταθερού σημείου, δύναται να συγκλίνει σε ασταθείς μόνιμες καταστάσεις.
Σχήμα 4.24 Αμέσως μετά το 2ο σημείο στροφής Δύο ιδιοτιμές του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης μεγαλύτερες της μονάδας.

Σχήμα 4.25 Σημείο Hopf. Δύο συζυγείς μιγαδικές ιδιοτιμές του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης με μέτρο ίσο με τη μονάδα.

Από τα σχήματα 4.22 έως και 4.25, διευκρινίζεται πλήρως, βάσει των ιδιοτιμών του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης, τι ισχύει αναφορικά με την ευστάθεια των υπολογιζόμενων λύσεων από την αρχή του βηματισμού μέχρι και την εμφάνιση του σημείου Hopf. Μένει να διευκρινιστεί το τι συμβαίνει μετά από αυτό. Από προηγούμενες εργασίες (Jensen & Ray, 1982, Κορωνάκη, 2004) είναι γνωστό για το συγκεκριμένο πρόβλημα, ότι μετά το σημείο Hopf οι λύσεις ανακτούν την ευστάθειά τους. Αυτό σημαίνει, ότι μετά το σημείο Hopf όλες οι ιδιοτιμές του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης γίνονται μικρότερες της μονάδας. Κάτι τέτοιο όμως δεν παρατηρείται στην παρούσα εργασία. Δηλαδή, ενώ οι υπολογιζόμενες μετά το σημείο Hopf
λύσεις ταυτίζονται με αυτές που παρουσιάζονται σε προηγούμενες εργασίες, οι υπολογιζόμενες ιδιοτιμές του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης δεν είναι στο σύνολό τους μικρότερες της μονάδος. Ειδικότερα παρατηρούνται τα εξής:

- Από την τιμή παραμέτρου $Da \approx 0.111$, όπου εμφανίζεται το σημείο Hopf, μέχρι την τιμή $Da \approx 0.121$ περιλαμβάνονται στο φάσμα του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης δύο συζυγείς μιγαδικές ιδιοτιμές με μέτρο μεγαλύτερο της μονάδος.
- Από την τιμή παραμέτρου $Da \approx 0.121$ μέχρι και την ολοκλήρωση του βηματισμού περιλαμβάνονται στο φάσμα του Ιακωβιανού πίνακα της επαναληπτικής διαδικασίας επίλυσης δύο ιδιοτιμές μεγαλύτερες της μονάδος.

Αυτή η διαφορά μεταξύ προηγούμενων αποτελεσμάτων και των αποτελεσμάτων αυτής της εργασίας χρειάζεται περαιτέρω διερεύνηση.

4.2.8 Επιτάχυνση σύγκλισης με χρήση της RPM

Προκειμένου να δειχθεί η σημαντικότατη επίδραση της RPM στην επιτάχυνση της σύγκλισης της επαναληπτικής διαδικασίας επίλυσης, παρατίθενται ακολούθως τέσσερα σχήματα. Όλα απεικονίζουν τον απαιτούμενο αριθμό επαναλήψεων για επίτευξη σύγκλισης, σε κάθε βήμα της επαναληπτικής διαδικασίας σταθερού σημείου, συναρτήσει της παραμέτρου βηματισμού. Ο βηματισμός αφορά μόνο τα τμήματα των κλάδων λύσεων μέχρι το 1\textdegree} σημείο στροφής. Τα δύο πρώτα σχήματα αφορούν τιμές παραμέτρου μέχρι και την τιμή $Da = 0.121$ και δείχνουν τι συμβαίνει χωρίς τη βοήθεια της RPM και με τη βοήθεια αυτής. Τα επόμενα δύο αφορούν τιμές παραμέτρου από $Da \approx 0.121$ μέχρι $Da \approx 0.122$, δηλαδή μέχρι την τιμή που εντοπίζεται το 1\textdegree} σημείο στροφής, και επίσης δείχνουν τι συμβαίνει με τη συνεισφορά της RPM και χωρίς αυτήν. Ωστόσο, τα δύο δεύτερα διαγράμματα δείχνουν τα συμβαίνει πολύ κοντά στο 1\textdegree} σημείο στροφής.

Από την παρατήρηση των σχημάτων 4.126 και 4.27 προκύπτει, ότι χωρίς την RPM ο αριθμός των απαιτούμενων επαναλήψεων για επίτευξη σύγκλισης διαρκώς αυξάνει, καθώς προσεγγίζεται το 1\textdegree} σημείο στροφής. Οι επαναλήψεις στο τέλος του βηματισμού ξεπερνούν τις 80. Αντιθέτως, με την RPM ο αριθμός των απαιτούμενων επαναλήψεων για επίτευξη σύγκλισης παραμένει σχεδόν σταθερός σε όλο το εύρος του βηματισμού και δεν ξεπερνάει το 15. Παρατηρείται δηλαδή με την RPM μία μείωση του απαιτούμενου για επίτευξη σύγκλισης αριθμού επαναλήψεων σε ποσοστό έως και 85\% περίπου.
Σχήμα 4.26 Απαιτούμενος αριθμός επαναλήψεων για επίτευξη σύγκλισης, σε κάθε βήμα της επαναλητικής διαδικασίας σταθερού σημείου, συναρτήσει της παραμέτρου βηματισμού, για τιμές παραμέτρου μέχρι $Da = 0,121$, χωρίς τη συνεισφορά της RPM.

Σχήμα 4.27 Απαιτούμενος αριθμός επαναλήψεων για επίτευξη σύγκλισης, σε κάθε βήμα της επαναλητικής διαδικασίας σταθερού σημείου, συναρτήσει της παραμέτρου βηματισμού, για τιμές παραμέτρου μέχρι $Da = 0,121$, με τη συνεισφορά της RPM.
Σχήμα 4.28 Απαιτούμενος αριθμός επαναλήψεων για επίτευξη σύγκλισης, σε κάθε βήμα της επαναληπτικής διαδικασίας σταθερού σημείου, συναρτήσει της παραμέτρου βηματισμού, για τιμές παραμέτρου από $Da \approx 0,121$ μέχρι $Da \approx 0,122$, χωρίς τη συνεισφορά της RPM.

Διαγράμματα 4.28 και 4.29, τα οποία δείχνουν τι συμβαίνει πολύ κοντά στο 1ο σημείο στροφής, προκύπτει, ότι χωρίς την RPM ο αριθμός των απαιτούμενων επαναλήψεων για επίτευξη σύγκλισης, φτάνοντας στο 1ο σημείο στροφής, αυξάνει κατακόρυφα και ξεπερνάει το 1500. Αντιθέτως, με την RPM ο αριθμός των απαιτούμενων επαναλήψεων για επίτευξη σύγκλισης παραμένει σχεδόν σταθερός και δεν ξεπερνάει το 15. Παρατηρείται δηλαδή με την RPM μία μείωση του απαιτούμενου για επίτευξη σύγκλισης αριθμού επαναλήψεων σε ποσοστό έως και 99% περίπου.
Σχήμα 4.29 Απαιτούμενος αριθμός επαναλήψεων για επίτευξη σύγκλισης, σε κάθε βήμα της επαναλητικής διαδικασίας σταθερού σημείου, συναρτήσει της παραμέτρου βηματισμού, για τιμές παραμέτρου από $Da \approx 0,121$ μέχρι $Da \approx 0,122$, με τη συνεισφορά της RPM.
Ανάλυση βέλτιστης λειτουργίας

5.1 Εισαγωγή

Η αλληλεπίδραση των φαινομένων μεταφοράς και των χημικών αντιδράσεων, οι οποίες εξαρτώνταν από τις συνθήκες λειτουργίας και τη γεωμετρία των αντιδραστήρων χημικής απόθεσης από τον μέσο, επηρεάζουν με τη σειρά τους την ποιότητα των παραγόμενων υμενίων. Η ποιότητα των υμενίων καθορίζεται από τη σύσταση και τη μορφολογία της επιφάνειας, καθώς και από την ομοιομορφία της κατανομής του πάχους κατά μήκος του υποστρώματος. Η συνεχής μείωση του μεγέθους των μικρο- και οπτοηλεκτρικών διατάξεων οδηγεί σε συνεχή ανάγκη για βελτιωμένο σχεδιασμό αντιδραστήρων ΧΑΑ, οι οποίοι πρέπει να ικανοποιούν τις ολοένα αυξανόμενες απαιτήσεις για ομοιόμορφη κατανομή πάχους των υμενίων.

Οι περισσότερες μαθηματικές μέθοδοι σχεδιασμού αντιδραστήρων ΧΑΑ βασίζονται στη "σύζευξη" μοντέλων μεταφοράς και μοντέλων κινητικής, τα οποία χρησιμοποιούνται για τη διερεύνηση της ποσοτικής επίδρασης των λειτουργικών παραμέτρων στις ιδιότητες των υμενίων απόθεσης. Συγκεκριμένα, η παραμετρική ανάλυση των αντιδραστήρων ΧΑΑ πραγματοποιείται με μεταβολή της τιμής μίας παραμέτρου ενώ οι τιμές των υπολοίπων παραμέτρων παραμένουν αμετάβλητες. Αν και κάθε μία από τις παραμετρικές μελέτες οδηγεί σε σημαντικά συμπεράσματα σχετικά με την παράμετρο που εξετάζεται, το πρόβλημα του σχεδιασμού των αντιδραστήρων ΧΑΑ δεν αντιμετωπίζεται "συνολικά".

Με στόχο τη βελτίωση της αποδοτικότητας της υπολογιστικής ανάλυσης αντιδραστήρων ΧΑΑ, ένας εξελικτικός αλγόριθμος ενσωματώνεται στο λεπτομερές μοντέλο υπολογιστικής ρευστοδυναμικής που αναπτύχθηκε για την περιγραφή των φαινομένων μεταφοράς και των χημικών αντιδράσεων στο εσωτερικό αντιδραστήρων ΧΑΑ. Συγκεκριμένα, το πρόβλημα της ομοιομορφίας του πάχους του υμενίου κατά μήκος του υποστρώματος διατυπώνεται ως πρόβλημα βελτιστοποίησης ενός στόχου και μια αντικειμενική συνάρτηση καθορίζεται για να εξυπηρετήσει τη διαδικασία της βελτιστοποίησης.
Βασική συμβολή του Εργαστηρίου Θερμικών Στροβιλόμηχανών του ΕΜΠ στο παρόν υπόγεγρο είναι η διάθεση και προσαρμογή στις ανάγκες της συνεργαζόμενης ομάδας της Σχολής Χημικών Μηχανικών ΕΜΠ ενός λογισμικού βελτιστοποίησης. Το λογισμικό βελτιστοποίησης είναι ένας κώδικας EASY 1.3 (Evolutionary Algorithm System, http://velos0.itt.mech.ntua.gr/EASY). Πρόκειται για λογισμικό βασισμένο σε εξελικτικούς αλγορίθμους που υπολογίζει τη βελτιστή λύση (για μονοκριτηριακά προβλήματα) ή τις βέλτιστες λύσεις (δηλαδή το μέτωπο των κατά Pareto βέλτιστων λύσεων στην πολυκριτηριακή βελτιστοποίηση). Η χρήση του λογισμικού EASY 1.3 προτιθέτει προεργασία σχετική με την αναγνώριση των ελεύθερων μεταβλητών του προβλήματος και τον καθορισμό κάτω και άνω ορίων αυτών. Επίσης απαιτεί τη διαθεσιμότητα λογισμικού αξιολόγησης των υποτυπών λύσεων, στη μορφή εκτελέσιμου κώδικα ή και αλληλουχίας εκτελέσιμων κώδικων αρκεί η έξοδος καθενός να είναι απόλυτα συμβατή με την είσοδο του επόμενου εκτελέσιμου κώδικα.

Το λογισμικό EASY 1.3 αναπτύχθηκε και συνεχίζει να αναπτύσσεται στο Εργαστήριο Θερμικών Στροβιλόμηχανών του ΕΜΠ [Γιώτης, 2003; Giannakoglou, 1999; Giannakoglou, 2000; Karakasis et al., 2001; Bonataki and Giannakoglou, 2002]. Αποτελεί γενικό λογισμικό βελτιστοποίησης, ικανό να εντοπίζει βέλτιστες λύσεις προβλήματων με ένα ή περισσότερους στόχους, υλοποιώντας ένα Γενικευμένο Εξελικτικό Αλγόριθμο (GEA) [Γιώτης, 2003]. Αυτός, χρησιμοποιώντας στοχαστικές διαδικασίες και μοιούμενος βιολογικώς διαδικασίες σχετικές με την εξέλιξη των ειδών, χειρίζεται πληθυσμούς λύσεων, προκειμένου να εντοπίσει ολικά ακρότατα αντικειμενικών συναρτήσεων, ανεξάρτητα από την πολυπλοκότητά τους και χωρίς απαιτήσεις ως προς την παραγωγισμότητα ή τη συνέχεια τους. Όταν πρόκειται για συναρτήσεις πολλαπλών κριτηρίων, εφαρμόζει τη λογική του κατά Pareto μετώπου βέλτιστων λύσεων.

Ο EASY 1.3 επικοινωνεί με το χρήστη μέσω περιβάλλοντος προγραμματισμένου σε JAVA, ενώ ο πυρήνας του είναι γραμμένος σε γλώσσα C++. Λειτουργεί στα λειτουργικά συστήματα Microsoft Windows, Unix και Linux.

Με τον τρόπο που ο EASY 1.3 επικοινωνεί με το λογισμικό του χρήστη, ο οποίος στη συνέχεια αναλύεται διεξοδικά, η χρήση έτοιμου-εμπορικού λογισμικού αξιολόγησης πρέπει να γίνει ιδιαίτερα προσεκτικά. Προσοχή λ.χ. απαιτεί η διαχείριση ενδεχόμενου περιορισμένου αριθμού αδειών χρήσης που μπορεί να είναι διαθέσιμες σε μια ερευνητική ομάδα όστο, μεταξύ άλλων, να γίνει αποδοτικότερη χρήση της πολυεπεξεργασία. Η πολυεπεξεργασία, στη μορφή προαπαιτητικής χρήσης περισσότερων του ενός επεξεργαστών για την ταυτόχρονη αξιολόγηση των μελών ενός πληθυσμού, είναι μια εύκολη αντιμετώπιση του γνωστού μειοεκπλήματος των εξελικτικών αλγοριθμών, αυτού δηλαδή της ανάγκης μεγάλου αριθμού αξιολογημένων μέχρι τον εντοπισμό της βέλτιστης λύσης. Με την ταυτόχρονη αξιολόγηση πολλών ατόμων του πληθυσμού μιας γενεάς σε ίση αριθμό επεξεργαστών, χωρίς να μειώνεται ο απαιτούμενος αριθμός αξιολογήσεων, μειώνεται ο χρόνος που απαιτεί συνολικά η βελτιστοποίηση.
5.2 Βασικά στοιχεία του Γενικευμένου Εξελικτικού Αλγορίθμου

Κύριο χαρακτηριστικό ενός εξελικτικού αλγορίθμου (EA) [Goldberg, 1989; Michalewits, 1992; Γιώτης, 2003] είναι η διαδικασία εξέλιξης και χειρισμού των τιμών των μεταβλητών παραμέτρων ενός προβλήματος, με στόχο να ελαχιστοποιηθεί μια αντικειμενική συνάρτηση, ενός ή πολλαπλών στοχών. Ο εξελικτικός αλγόριθμος που υλοποιεί το λογισμικό EASY 1.3 χειρίζεται τρεις βασικούς πληθυσμούς, οι οποίοι μετέχουν στην εξέλιξη: οι γονείς, οι απόγονοι και οι επιλεκτοί. Ανάλογα με το πλήθος των ατόμων στα τρία αυτά σύνολα, τους τελεστές εξέλιξης που χρησιμοποιούνται και τις παραμέτρους που επιλέγονται για τους τελεστές αυτούς, οι Εξελικτικοί Αλγόριθμοι μπορούν να λειτουργήσουν ως Γενετικοί Αλγόριθμοι (ΓΑ) ή ως Εξελικτικές Στρατηγικές (ΣΣ). Η σημερινή κατάσταση της σχετικής έρευνας τείνει να προάγει γενικευμένους EA (όπως ο EASY 1.3) που δε μιμούνται αναγκαστικά ότι τους ΓΑ ούτε τις ΣΣ καλύτερα υιοθετούν (με σχετική ελευθερία) τους βέλτιστους τελεστές καθενός, στοχεύοντας στη βέλτιστη συμπεριφορά ως προς τη σύγκλιση.

Οι ελεύθερες μεταβλητές ενός προβλήματος ελαχιστοποίησης συνθέτουν ένα διάνυσμα, που αποτελεί υποψία λύσης του προβλήματος και θα καλείται 'χρωμόσωμα'. Ο εξελικτικός αλγόριθμος χειρίζεται πληθυσμούς χρωμοσωμάτων σε κωδικοποιημένη μορφή. Προσφέρεται ποικιλία από μεθόδους κωδικοποίησης, περιλαμβάνοντας την απλή διαδικασία, τη διαδικασία της γενιάς Gray και την πραγματική κωδικοποίηση. Προτού αρχίσει η διαδικασία της βέλτιστοποίησης, ορίζονται τα όρια εντός των οποίων θα αναζητηθούν οι βέλτιστες τιμές τους, για τις οποίες η αντικειμενική συνάρτηση ελαχιστοποιείται.

Οι τρεις πληθυσμοί, οι οποίοι το μέγεθος ορίζεται διατηρείται σταθερό κατά τη διάρκεια του, είναι:

- Ο πληθυσμός των γονέων: περιλαμβάνει μία άτομα της γενιάς g, συμβολίζεται Sg,μ.
- Ο πληθυσμός των απογόνων: περιλαμβάνει μία άτομα της γενιάς g, συμβολίζεται Sg,λ. Συνήθως ο πληθυσμός των γονέων είναι μικρότερος από τον απογόνων, ενώ στους γενετικούς αλγόριθμους οι δύο πληθυσμοί έχουν ίδιο μέγεθος.
- Πληθυσμός επιλεκτών (ελίτ): Περιλαμβάνει τα καλύτερα άτομα, που επιλέγονται τόσο από τη γενιά g, όσο και από προηγούμενες γενιές. Συμβολίζεται Sg,ε. Ένα από τα σημεία στα οποία ο EASY 1.3 «ξεφεύγει» από το σταθεροποιημένο EA είναι ότι διατηρεί πληθυσμό επιλεκτών με μη-μοναδιαίο πληθύσμο ακόμα και στη μονοκριτηριακή βέλτιστοποίηση, όπου αναζητείται μία λύση. Η αποθήκευση και χρησιμοποίηση περισσότερων επιλεκτών ατόμων κατά την εξέλιξη, μέσω τελεστών.
ελιτσμού, έχει δειχθεί ότι ενισχύει την ικανότητα αποτελεσματικής εξερεύνησης του χώρου των λύσεων.

Τα βασικά στάδια της διαδικασίας εξέλιξης που ακολουθούνται από τον εξελικτικό αλγόριθμο της παρούσας εργασίας, εικονικά παρουσιαζόμενα και στο Σχήμα 5.1 είναι τα ακόλουθα:

Σχήμα 5.1 Σχηματική αναπαράσταση της εξελικτικής διαδικασίας

Στην πρώτη γενεά (έστω \(g \rightarrow 0 \)) επιλέγονται τυχαία τα μέλη του αρχικού συνόλου των απογόνων \(S^h, k \) και, για αυτά υπολογίζεται το διάνυσμα κόστους του \(S^g, k \), με διαδοχικές κλήσεις της αντικειμενικής συνάρτησης \(y = F(x), \forall x \in S^g, k \). Επιλέγονται τα καλύτερα (κυρίαρχα, με την έννοια της κυριαρχίας κατά Pareto, σε πολυκριτηριακή βελτιστοποίηση [Giotis and Giannakoglou, 1999; Bonataki and Giannakoglou, 2002; Coelo, 1999]) άτομα από το \(S^g, k \) και το προηγούμενο \(S^g, e \) (αν υπάρχει - στην πρώτη γενεά, προφανώς, αυτό δεν υφίσταται) και με αυτά ανανεώνεται το \(S^g, e \). Συμβολικά, με χρήση του τελεστή ελιτσμού, \(S^{g+1, e} = T_r(S^{g, k} \cup S^{g, e}) \). Ο τελεστής αυτός ενσωματώνει προαρθρικά και τον τελεστή αραίωσης, ώστε να παραμείνει σε «λογικό» επίπεδο ο πληθάρθιμος του \(S^{g+1, e} \). Τυπικό κριτήριο αραίωσης αποτελεί το μέτρο της γειτνίασης (δηλαδή αποστάσεις) μεταξύ των ατόμων του \(S^{g+1, e} \). Ακολουθεί η επιλογή γονέων προς αναπαραγωγή, \(S^{g+1, μ} = T_m(S^{g, e} \cup S^{g, k} \cup S^{g, μ}) \). Στη συνέχεια, ο νέος πληθυσμός απογόνων σχηματίζεται με την εφαρμογή των τελεστών αναπαραγωγής σε τυχαία επιλεγμένα άτομα από το σύνολο των γονέων, με πιθανότητες που ορίζονται προτού αρχίσει ο αλγόριθμος. Δύο είναι οι βασικοί τελεστές αναπαραγωγής, αυτός της διαστάσεως \(T_r \) και αυτός της μετάλλαξης \(T_m \). Συμβολικά \(S^{g+1, k} = T_r(S^{g+1, μ} \cup S^{g+1, e}) \). Από το σύνολο των επιλεκτικών επιλέγονται τυχαία άτομα και εισάγονται στο σύνολο \(S^{g+1, k} \), όπου τα ανανεώνονται αντικαθιστώντας τα
χειρότερα άτομα του συνόλου των απογόνων. Πρόκειται για μια δεύτερη εφαρμογή του ελιτισμού, ως \(S^{g+1,d} = T_{e2}(S^{g+1,d} \cup S^{g+1,e}) \). Στο σημείο αυτό, ο αλγόριθμος τερματίζεται αν ικανοποιείται το κριτήριο σύγκλισης τερματισμού. Συνήθως, ο τερματισμός γίνεται για κάποιο μέγιστο αριθμό γενεών ή κλήσεων της αντικειμενικής συνάρτησης. Αλλιώς, αρχίζει η επόμενη γενεά \((g\leftarrow g+1)\), επιστρέφοντας στο πρώτο μετά την αρχικοποίηση βήμα που περιγράψαμε.

5.3 Διαδικασία βελτιστοποίησης με χρήση του λογισμικού EASY

Προηγουμένως, παρουσιάστηκαν και αναλύθηκαν συνοπτικά τα κύρια στάδια και οι μέθοδοι, που εφαρμόζονται από τον EASY 1.3, στο πλαίσιο ενός Γενικεμένου Εξελικτικού Αλγορίθμου. Ακολούθως, περιγράφεται με συντομία, η διαδικασία κατάστρωσης ενός ολοκληρωμένου πλάνου βελτιστοποίησης.

Το λογισμικό βελτιστοποίησης εκτελεί όλες τις απαραίτητες διαδικασίες για την αναζήτηση της/των βέλτιστης/των λύσης/σεων, ενώ η αξιολόγηση ενός ή περισσότερων ατόμων, μέσω του EASY 1.3, ανατίθεται σε εξωτερικό πρόγραμμα. Στο συγκεκριμένο υποέργο, όπου συνεργάζονται το Εργαστήριο Θερμικών Στροβιλομηχανών της Σχολής Μηχανολόγων Μηχανικών Ε.Μ.Π. και η Μονάδα Υπολογιστικής Ρευστοδυναμικής της Σχολής Χημικών Μηχανικών Ε.Μ.Π., χρησιμοποιήθηκε ως αξιολογήτης το εμπορικό πακέτο υπολογιστικής ρευστοδυναμικής PHOENICS, υπερνικώντας τη δύσκολια απαίτησης της άδειας χρήσης σε κάθε αξιολόγηση. Ο αξιολογητής καλείται από τον ΕΑ μέσω ενός αρχείου task.bat, για κάθε ομοσπονδιά λύσης. Η τελευταία ‘τροφοδοτείται’ στον αξιολογητή με τη μορφή αρχείου keiménou task.dat, που περιέχει τις τιμές της τρέχουσας λύσης για κάθε παράμετρο του προβλήματος.

Σχήμα 5.2 Σχηματική αναπαράσταση της συνεργασίας EA και εξωτερικού αξιολογητή λύσεων

![EASY Kernel Diagram](image.png)
Ο αξιολογητής επιστρέφει ένα διάνυσμα με τις τιμές των στόχων, που αναλογεί στην τρέχουσα λύση, εντός ενός αρχείου task.res και αυτό με τη σειρά του επιστρέφει στον EASY 1.3. Το προαναφερθέν πλάνο για μια εργασία βελτιστοποίησης φαίνεται στο Σχήμα 5.2.

5.4 Καθορισμός του προβλήματος βελτιστοποίησης αντιδραστήρα ΧΑΑ

Στόχος της βελτιστοποίησης του αντιδραστήρα ΧΑΑ είναι ο προσδιορισμός των τιμών των λειτουργικών παραμέτρων οι οποίες εξασφαλίζουν την ελάχιστη ανομοιομορφία πάχους του υμενίου κατά μήκος του υποστρώματος. Για την εκτίμηση της ανομοιομορφίας του ρυθμού ανάπτυξης, και κατ'επέκταση του πάχους του υμενίου, δύο διαφορετικές μετρικές υπολογίζονται στο τέλος κάθε προσομοίωσης υπολογιστικής ρευστοδυναμικής. Η πρώτη μετρική είναι η ανομοιομορφία του πάχους του υμενίου, η οποία ορίζεται μέσω του μέγιστου, ελάχιστου και μέσου ρυθμού ανάπτυξης του υμενίου από τη σχέση:

- νόρμα \(L^\infty \) : \[\Delta G = \frac{GR_{\text{max}} - GR_{\text{min}}}{GR} \] (5.1)

Η δεύτερη μετρική είναι η νόρμα \(L^2 \) της κατανομής του ρυθμού ανάπτυξης περί της μέσης τιμής και χρησιμοποιείται ως αντικειμενική συνάρτηση (στόχος) στη διαδικασία βελτιστοποίησης με χρήση του λογισμικού EASY 1.3.

- νόρμα \(L^2 \) : \[f(P) = \left(\frac{1}{A_w} \int \left(\overline{GR(x,z)} - GR \right)^2 dA \right)^{1/2} \] (5.2)

Στη σχέση 5.2, \(A_w \) είναι η επιφάνεια του υποστρώματος, \(GR(x,z) \) είναι η κατανομή του ρυθμού ανάπτυξης πάνω στο υπόστρωμα, και \(\overline{GR} \) είναι ο μέσος ρυθμός ανάπτυξης, η οποία υπολογίζεται με ολοκλήρωση του \(GR(x,z) \). Για τον υπολογισμό του επιφανειακού ολοκλήρωμας χρησιμοποιείται η προσεγγιστική μέθοδος Simpson. \(P \) είναι το άνυσμα των λειτουργικών παραμέτρων (μεταβλητών σχεδιασμού) του αντιδραστήρα ΧΑΑ.

Από τις λειτουργικές παραμέτρους, οι οποίες είναι πιθανό να επηρεάζουν το ρυθμό ανάπτυξης και την κατανομή του πάνω στο υπόστρωμα, η παρούσα μελέτη περιορίζεται στις ακόλουθες πέντε μεταβλητές σχεδιασμού, οι οποίες παρουσιάζονται στο Σχήμα 5.3:

- παροχή οξυγόνου \((F_o) \)
- θερμοκρασία πηγής ατμών \((T_b) \)
- θερμοκρασία απόθεσης \((T_w) \)
- παροχή φέροντος αερίου \((F_d) \)
- πίεση λειτουργίας \((P) \)
Επισημαίνεται ότι η παροχή του πρόδρομου υλικού (SnCl₄) μεταβάλλεται με μεταβολή της θερμοκρασίας της πηγής ατμών (T_b), ενώ η παροχή του φέροντος αερίου αζώτου παραμένει σταθερή.

Σχήμα 5.3 Οι μεταβλητές σχεδιασμού στο πρόβλημα βελτιστοποίησης του εργαστηριακού αντιδραστήρα ΧΑΑ για την απόθεση οξειδίου του κασσιτέρου

Το εύρος των τιμών καθώς και η τιμή αναφοράς των μεταβλητών σχεδιασμού, δίνεται στον Πίνακα 5.1, που ακολουθεί.

Πίνακας 5.1 Εύρος τιμών και τιμές αναφοράς των μεταβλητών σχεδιασμού στο πρόβλημα βελτιστοποίησης του εργαστηριακού αντιδραστήρα ΧΑΑ για την απόθεση οξειδίου του κασσιτέρου

<table>
<thead>
<tr>
<th>Μεταβλητές σχεδιασμού</th>
<th>Ελάχιστη τιμή</th>
<th>Μέγιστη τιμή</th>
<th>Τιμή αναφοράς</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_d (mL/min)</td>
<td>110</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>T_b (°C)</td>
<td>14</td>
<td>32</td>
<td>28.3</td>
</tr>
<tr>
<td>T_w (°C)</td>
<td>390</td>
<td>510</td>
<td>470</td>
</tr>
<tr>
<td>F_d (mL/min)</td>
<td>200</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>P (atm)</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
5.5 Αποτελέσματα παραμετρικής ανάλυσης αντιδραστήρα ΧΑΑ

Αρχικά, μέσω παραμετρικής ανάλυσης, διερευνάται η ποσοτική επίδραση των μεταβλητών σχεδιασμού στις ιδιότητες των υμενίων απόδεσης, και συγκεκριμένα, στο μέσο ρυθμό ανάπτυξης του υμενίου, GR, και στην ανομοιομορφία του πάχους του υμενίου, ΔG. Η επίλυση στις συνθήκες αναφοράς, που αναφέρονται στον Πίνακα 5.1, ακολουθείται από τα αποτελέσματα των επιμέρους παραμετρικών μελετών.

Το σύστημα των μη γραμικών μερικών διαφορικών εξισώσεων επιλύεται σε ένα μη ορθογώνικό πλέγμα 49.140 κόμβων, το οποίο αντιστοιχεί περίπου σε 400.000 αγνώστους. Κάθε προσομοίωση υπολογιστικής ρευστοδυναμικής απαιτεί για σύγκλιση χρόνο 2h CPU, σε έναν επεξεργαστή Pentium IV/2.4 GHz.

5.5.1 Αποτελέσματα επίλυσης στις συνθήκες αναφοράς

Η κατανομή του ρυθμού ανάπτυξης στις συνθήκες αναφοράς, στην εγκάρσια και στην αξονική διεύθυνση, απεικονίζεται στο Σχήματα 5.4α και β, αντίστοιχα. Τα αποτελέσματα της προσομοίωσης προβλέπουν μια σχετικά μεγάλη μεταβολή του ρυθμού ανάπτυξης και στις δύο διευθύνσεις. Η ανομοιομορφία του ρυθμού ανάπτυξης, ΔG, υπολογίζεται ίση προς 7.2%, αρκετά μεγαλύτερη από την επιθυμητή τιμή του 1-2%. Στην εγκάρσια διεύθυνση (Σχήμα 5.4α), το τοπικό ελάχιστο του ρυθμού ανάπτυξης συνδέεται με τις μεγάλες βαθμιδές θερμοκρασίας, οι οποίες παρουσιάζονται στο Σχήμα 5.5α. Ωστόσο, η ομοιομορφία του ρυθμού ανάπτυξης βελτιώνεται στη διεύθυνση της ροής, δηλαδή, με την αύξηση της απόστασης από το εμπρόθιο άκρο του υποστρώματος. Στην αξονική διεύθυνση, ο ρυθμός ανάπτυξης μειώνεται με την απόσταση, όπως φαίνεται στο Σχήμα 5.4β. Επιπλέον, η κατανομή του ρυθμού ανάπτυξης κατά μήκος της κεντρικής αξονικής γραμμής είναι διαφορετική σε σχέση με τα άκρα του υποστρώματος.

5.4 Σχήματα

Σχήμα 5.4 Η κατανομή του ρυθμού ανάπτυξης στις συνθήκες αναφοράς (Πίνακας 4.2), στην (α) εγκάρσια x-διεύθυνση (σε διαφορετικές αποστάσεις από την αρχή του υποστρώματος) και στην (β) αξονική z-διεύθυνση (σε διαφορετικές αποστάσεις από την κεντρική αξονική γραμμή του υποστρώματος).
5.5.2 Επίδραση παροχής οξυγόνου

Ο ρυθμός ανάπτυξης και η κατανομή αυτού υπολογίζονται για παροχές οξυγόνου από 110 έως 250 mL/min, με βήμα 20 mL/min. Όπως προκύπτει από τα αποτελέσματα της παραμετρικής μελέτης, αύξηση της παροχής του αντιδρόντος οξυγόνου προκαλεί μικρή μείωση του ρυθμού ανάπτυξης, ενώ η ομοιομορφία του γίνεται χειρότερη.

Σχήμα 5.6 Επίδραση της παροχής οξυγόνου (α) στο ρυθμό ανάπτυξης και (β) στην ανομοιομορφία του πάχους του υμενίου. Ο κύκλος συμβολίζει τις συνθήκες αναφοράς.
5.5.4 Επίδραση θερμοκρασίας απόθεσης

Ο ρυθμός ανάπτυξης και η κατανομή αυτού υπολογίζονται για θερμοκρασίες απόθεσης από 390° έως 510°C, με βήμα 20°C. Τα αποτελέσματα στο Σχήμα 5.8α δείχνουν ότι αύξηση της θερμοκρασίας προκαλεί σημαντική αύξηση του ρυθμού ανάπτυξης του υμενίου. Όταν η θερμοκρασία του υποστρώματος αυξάνει (ενώ η θερμοκρασία των τοιχωμάτων παραμένει σταθερή), η αύξηση της θερμικής διάχυσης προκαλεί σημαντική απομάκρυνση των αντιδρόντων από την επιφάνεια απόθεσης προς τα κρύα τοιχώματα του αντιδραστήρα. Το γεγονός αυτό ερμηνεύει τα αποτελέσματα του Σχήματος 5.8β, σύμφωνα με τα οποία, η ανομοιομορφία είναι μια αύξουσα συνάρτηση της θερμοκρασίας απόθεσης.

Σχήμα 5.7 Επίδραση της θερμοκρασίας πηγής ατμών (α) στο ρυθμό ανάπτυξης και (β) στην ανομοιομορφία του πάχους του υμενίου. Ο κύκλος συμβολίζει τις συνθήκες αναφοράς.

Σχήμα 5.8 Επίδραση της θερμοκρασίας απόθεσης (α) στο ρυθμό ανάπτυξης και (β) στην ανομοιομορφία του πάχους του υμενίου. Ο κύκλος συμβολίζει τις συνθήκες αναφοράς.
5.5.5 Επίδραση παροχής φέροντος αερίου

Ο ρυθμός ανάπτυξης και η κατανομή αυτού υπολογίζονται για παροχές φέροντος αερίου από 200 έως 400 mL/min, με βήμα 20 mL/min. Μείωση της παροχής του φέροντος αερίου, μέσω της κεντρικής οπής εισόδου, προκαλεί αύξηση του ρυθμού ανάπτυξης. Η βελτίωση της ανάμειξης των αντιδρών, πριν φθάσουν στην επιφάνεια απόθεσης, συνοδεύεται από βελτίωση της ομοιομορφίας, όπως φαίνεται στο Σχήμα 5.9β.

Σχήμα 5.9 Επίδραση της παροχής φέροντος αερίου (α) στο ρυθμό ανάπτυξης και (β) στην ομοιομορφία του πάχους του υμενίου. Ο κύκλος συμβολίζει τις συνθήκες αναφοράς.

5.5.6 Επίδραση πίεσης λειτουργίας

Στα πειράματα απόθεσης οξειδίου του κασσιτέρου που πραγματοποιήθηκαν στο Π.Ε.2, ο εργαστηριακός αντιδραστήρας XAA λειτούργησε σε συνθήκες ατμοσφαιρικής πίεσης. Στο παρόν υπόγερο, η πίεση λειτουργίας μεταβάλλεται από 0.1 έως 1.0 atm με βήμα 0.1 atm. Τα αποτελέσματα της παραμετρικής μελέτης δείχνουν ότι μείωση της πίεσης προκαλεί μείωση του ρυθμού ανάπτυξης με ταυτόχρονη βελτίωση της ομοιομορφίας.

Σχήμα 5.10 Επίδραση της πίεσης λειτουργίας (α) στο ρυθμό ανάπτυξης και (β) στην ομοιομορφία του πάχους του υμενίου. Ο κύκλος συμβολίζει τις συνθήκες αναφοράς.
5.6 Αποτελέσματα βελτιστοποίησης αντιδραστήρα ΧΑΑ

Από τις παραμετρικές μελέτες που προηγήθηκαν προκύπτει ότι η ομοιομορφία του ρυθμού ανάπτυξης επηρεάζεται και από τις πέντε λειτουργικές παραμέτρους που μελετήθηκαν. Τα αποτελέσματα των παραμετρικών μελετών επανασχεδιάζονται στο Σχήμα 5.11 που ακολουθεί, σε όρους της αντικειμενικής συνάρτησης (νόρμα L^2 της κατανομής του ρυθμού ανάπτυξης περί της μέσης τιμής).

Σχήμα 5.11 Εξάρτηση της αντικειμενικής συνάρτησης (νόρμα L^2) από τις πέντε μεταβλητές σχεδιασμού – συγκεντρωτικό διάγραμμα

Παρατηρούμε ότι, από τις μεταβλητές σχεδιασμού που μελετήθηκαν παραμετρικά, εκείνες που βρέθηκαν να επηρεάζουν περισσότερο σημαντικά την αντικειμενική συνάρτηση είναι η θερμοκρασία απόθεσης και η θερμοκρασία της πηγής ατμών. Επισημαίνεται ωστόσο, ότι η ελάχιστη τιμή της αντικειμενικής συνάρτησης που υπολογίστηκε είναι 7.023E-3 (ανομοιομορφία ίση προς 3%) και αντιστοιχεί σε πίεση λειτουργίας ίση με 10kPa.

Τα αποτελέσματα τριών υπολογισμών βελτιστοποίησης (Optimization Runs, OR) παρουσιάζονται στο Σχήμα 4.20. Επισημαίνεται ότι για τους υπολογισμούς βελτιστοποίησης γίνεται χρήση συστοιχίας 8 επεξεργαστών Pentium IV/2.4 GHz, για την ταυτόχρονη αξιολόγηση των μελών ενός πληθυσμού.

Ο πρώτος υπολογισμός βελτιστοποίησης (OR1) έγινε για λόγους επαλήθευσης, έτσι ώστε τα αποτελέσματα της βελτιστοποίησης να συγκριθούν με τα αποτελέσματα της παραμετρικής ανάλυσης που προηγήθηκαν. Πράγματι, τα αποτελέσματα του υπολογισμού βελτιστοποίησης OR1, με ελεύθερη μεταβλητή την παροχή οξυγόνου, βρίσκονται σε συμφωνία με τα αποτελέσματα της παραμετρικής μελέτης, όπως προκύπτει από την καμπύλη F_o του Σχήματος 5.11.
Σχήμα 5.12 Οι τιμές της αντικειμενικής συνάρτησης για τους τρεις υπολογισμούς βελτιστοποίησης του αντιδραστήρα ΧΑΑ.

Ο δεύτερος υπολογισμός βελτιστοποίησης (OR2) περιλαμβάνει τις τρεις ελεύθερες μεταβλητές σχεδιασμού του Πίνακα 5.1, την παροχή οξυγόνου, \(F_o \), τη θερμοκρασία πηγής ατμόν, \(T_b \), και τη θερμοκρασία απόθεσης, \(T_w \). Από τις λειτουργικές παραμέτρους του εργαστηριακού αντιδραστήρα ΧΑΑ, αυτές οι τρεις είναι οι πλέον πρόσφορες για ρύθμιση από το χειριστή λειτουργία του αντιδραστήρα.

Ο τρίτος υπολογισμός βελτιστοποίησης (OR3) περιλαμβάνει και τις πέντε μεταβλητές σχεδιασμού και επιτυγχάνει τη μεγαλύτερη μείωση της αντικειμενικής συνάρτησης. Οπως φαίνεται στον Πίνακα 5.2, η αντικειμενική συνάρτηση μειώνεται 1 τάξη μεγέθους από τον υπολογισμό βελτιστοποίησης μιας παραμέτρου (OR1) στον υπολογισμό βελτιστοποίησης πέντε παραμέτρων (OR3). Αντίστοιχα, η ανομοιομορφία μειώνεται από 4.2% στον υπολογισμό βελτιστοποίησης τριών παραμέτρων (OR2) σε 1.2% στον υπολογισμό βελτιστοποίησης πέντε παραμέτρων (OR3), τιμή που είναι αποδεκτή για βιομηχανικές εφαρμογές.

Πίνακας 5.2 Αποτελέσματα βελτιστοποίησης για τους τρεις υπολογισμούς βελτιστοποίησης

<table>
<thead>
<tr>
<th>Υπολογισμός βελτιστοποίησης</th>
<th>Μεταβλητές σχεδιασμού</th>
<th>Τελική τιμή</th>
<th>Ανομοιομορφία (%)</th>
<th>Νόρμα L^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR1</td>
<td>(F_o)</td>
<td>100</td>
<td>6.840</td>
<td>1.698E-2</td>
</tr>
<tr>
<td>OR2</td>
<td>(F_o, T_b, T_w)</td>
<td>100, 32, 390</td>
<td>4.266</td>
<td>9.765E-3</td>
</tr>
<tr>
<td>OR3</td>
<td>(F_o, T_b, T_w, F_d, P)</td>
<td>100, 32, 390, 306.35, 0.1</td>
<td>1.198</td>
<td>2.267E-3</td>
</tr>
</tbody>
</table>
Οι κατανομές του πάχους του υμενίου, στην εγκάρσια και στην αξονική διεύθυνση, για τις βέλτιστες τιμές των μεταβλητών σχεδιασμού κάθε υπολογισμού βελτιστοποίησης που αναφέρονται στον Πίνακα 5.2, παρουσιάζονται στο Σχήμα 5.13. Είναι εμφανές ότι η ομοιομορφία της κατανομής του πάχους βελτιώνεται σημαντικά με την αύξηση του αριθμού των μεταβλητών σχεδιασμού που συμμετέχουν στον υπολογισμό βελτιστοποίησης.

Σχήμα 5.13 Η κατανομή του ρυθμού ανάπτυξης στην (α) εγκάρσια x-διεύθυνση και στην (β) αξονική z-διεύθυνση, στις βέλτιστες συνθήκες λειτουργίας του αντιδραστήρα ΧΑΑ.
Προοπτικές για Μελλοντική Έρευνα

Στα πλαίσια του παρόντος υποέργου αναπτύχθηκε μια ολοκληρωμένη και αξιόπιστη μεθοδολογία ανάλυσης διεργασιών Χημικής Απόθεσης από Ατμό με απότερο στόχο την εξαγωγή πρακτικών συμπερασμάτων σε προβλήματα σχεδιασμού και βελτιστοποίησης πραγματικών συστημάτων ΧΑΑ. Λογική συνέχεια του έργου αυτού είναι η χρήση της υπάρχουσας υποδομής για τη βελτίωση των χαρακτηριστικών των υμενίων/επικαλύψεων που αναπτύσσονται σε αντιδραστήρες ΧΑΑ που λειτουργούν σε εργαστηριακή και βιομηχανική κλίμακα καθώς και την επίλυση προβλήματος σχεδιασμού νέων συστημάτων απόθεσης.

Σε αντιστοιχία με τα επιμέρους Πακέτα Εργασίας ΠΕ1-ΠΕ3 και τα αποτελέσματα που προέκυψαν κατά την υλοποίηση του υποέργου, οι προοπτικές για μελλοντική έρευνα διαμορφώνονται ως εξής:

Στο ΠΕ1 “Προσομοίωση” και συγκεκριμένα στην περιοχή της υπολογιστικής ανάλυσης διεργασιών Χημικής Απόθεσης από Ατμό, οι προοπτικές αφορούν στη βελτίωση του προσομοιωτή που αναπτύχθηκε, ώστε να μην αμελεί κανέναν από τους φυσικούς μηχανισμούς μεταφοράς μαξίας, ορμής και ενέργειας. Για παράδειγμα, τα στερεά υποστρώματα θερμαίνονται συνήθως με ακτινοβολία από λυχνίες φωτός, γεγονός που επιβάλλει τη διερεύνηση της επίδρασης της ακτινοβολίας στην κατανομή της θερμοκρασίας στο εσωτερικό των αντιδραστήρων ΧΑΑ. Αν και υπάρχουν αναφορές για τη μοντελοποίηση της ακτινοβολίας μεταξύ επιφανειών που βρίσκονται σε διαφορετικές θερμοκρασίες, στον τομέα των διεργασιών ΧΑΑ το φαινόμενο αυτό αμελείται συνήθως από τους υπολογισμούς. Υπάρχει συνεπώς ανάγκη για τη μελέτη της θερμικής ακτινοβολίας και τη συνεισφορά αυτής στη βελτίωση των θεωρητικών προβλέψεων του προσομοιωτή.

Όσον αφορά στα συγκεκριμένα χημικά συστήματα απόθεσης που μελετήθηκαν στα πλαίσια του υποέργου, υπάρχει προοπτική επέκτασης του προσομοιωτή για την περιγραφή των αντιδράσεων που λαμβάνουν χώρα στην αέρια φάση. Στην περίπτωση των υμενίων οξειδίου του κασσιτέρου, για την περιγραφή της χημικής κινητικής του συστήματος απόθεσης, έγινε
χρήση ετερογενών μηχανισμών "μιας κατεύθυνσης", οι οποίοι περιλαμβάνουν μη αντιστρεπτές αντιδράσεις απορρόφησης και εκρόφησης και το υμένιο σχηματίζεται μέσω ετερογενών αντιδράσεων τύπου Eley-Rideal. Σην ιδία κατεύθυνση, μια συνολική ετερογενής αντιδραση χρησιμοποιήθηκε για την περιγραφή της χημειας απόθεσης των υμενίων αλουμινίου. Ο συνυπολογισμός των αντιδράσεων αέριας φάσης θα μπορούσε ενδεχομένως να βελτιώσει τη συμφωνία πειραματικών μετρήσεων και προβλέψεων του προσωπικού στις συνθήκες εκείνες (ψηλές θερμοκρασίες υποστρώματος και χαμηλοί ρυθμοί παροχής εισόδου) που εννοούν τις αντιδράσεις στην αέρια φάση (βλ. Σχήματα 3.12 και 3.13).

Τέλος, στα πλαίσια του ΠΕ1 διερευνήθηκε η απόδοση του λογισμικού βελτιστοποίησης EASY στο πρόβλημα της εκτίμησης των κινητικών παραμέτρων. Η ερευνητική προσπάθεια που έγινε στα πλαίσια του παρόντος υποέργου δεν ονομάστηκε σε ενθαρρυντικά αποτελέσματα όσον αφορά στην αποδοτική χρήση του λογισμικού βελτιστοποίησης, κυρίως εξαιτίας του απαγορευτικά μεγάλου υπολογιστικού χρόνου της διαδικασίας βελτιστοποίησης. Υπάρχει, επομένως, ανάγκη για περαιτέρω έρευνα στο πεδίο της ανάπτυξης αποδοτικών μεθόδων αναζήτησης βέλτιστων τιμών στο δύσκολο πρόβλημα της εκτίμησης κινητικών παραμέτρων.

Η πλέον επείγουσα προτεραιότητα, άμεσα συνδεδεμένη με την ανάπτυξη πιο ρεαλιστικών μοντέλων και, κατά συνέπεια, μεγαλύτερων υπολογιστικών προβλημάτων, καθώς και με την διεξοδικότερη παραμετρική ανάλυση, είναι η αξιοποίηση της παράλληλης υπολογιστικής επεξεργασίας σε συστοιχίες υπολογιστών. Από τις ενδεικτικές τιμές απαρτισμένου υπολογιστικού χρόνου που αναφέρονται στο εδάφιο 5.5, προκύπτει ότι η σειριακή επεξεργασία δεν είναι αποδοτική. Η σχεδόν δημιουργεί στο προσωπικό υπολογιστικής συστοιχίας από 20 κόμβους που έχει εγκατασταθεί στη Μονάδα Υπολογιστικής Ρευστοδυναμικής (http://147.102.82.28) της Σχολής Χημικών Μηχανικών ΕΜΠ, καθώς και σε συστοιχία από 32 κόμβους που έχει εγκατασταθεί στη Σχολή Χημικών Μηχανικών ΕΜΠ – http://febui.chemeng.ntua.gr/pegasus.htm.

Στο ΠΕ2 "Πείραμα" και συγκεκριμένα στην περιοχή της πειραματικής ανάλυσης διεργασιών Χημικής Απόθεσης από Ατμό, οι προσπορικές μελλοντικής έρευνας αφορούν αρχικά στην ολοκλήρωση των πειραμάτων απόθεσης υμενίων οξειδίου του ψευδοργήρου στον τροποποιημένο εργαστηριακό αντιδραστήρα που επανασχεδιάστηκε στα πλαίσια του παρόντος υποέργου. Αξιοποιώντας τα συμπεράσματα που προέκυψαν μέχρι σήμερα, ο σχεδιασμός πειραμάτων απαιτεί λιγότερα πειράματα σε ένα μικρότερο διάστημα τιμών των λειτουργικών παραμέτρων. Στην κατεύθυνση αυτή, ιδιαίτερα ενδιαφέρον θα είχε η επαλήθευση των αποτελεσμάτων που προέκυψαν από την ανάλυση βέλτιστης λειτουργίας του αντιδραστήρα απόθεσης υμενίων οξειδίου του κασσετέρου.

Σχετικά με την πειραματική ανάλυση της ανάπτυξης υμενίων αλουμινίου, υπάρχει προσπορική επέκταση των πειραμάτων σε μια ευρύτερη θερμοκρασιακή περιοχή λειτουργίας του εργαστηριακού αντιδραστήρα για την ασφαλή εξαγωγή συμπεριλαμβάνεται τον αφορούν στην επίδραση των φαινομένων μεταφοράς και των χημικών αντιδράσεων αέριας και στερεής φάσης στο συνολικό ρυθμό ανάπτυξης. Επιπλέον, μέσω της ανάδρασης με την
προσομοίωση-βελτιστοποίηση, θα επιχειρηθεί ο επανασχεδιασμός του συστήματος καταιγισμού ώστε να εξασφαλίζεται ομοιόμορφη κατανομή των συστατικών του μίγματος στη στερεή επιφάνεια απόθεσης.

Στο ΠΕ3 "Συστημική Ανάλυση - Ανάλυση Ευστάθειας" οι προοπτικές αφορούν κυρίως στην αποδοτικότητα της παραμετρικής ανάλυσης. Η περιπλοκότητα – ψυκτικο-χημικοί μηχανισμοί, γεωμετρία αντιδραστήρα, εύρος κλιμάκιον χώρου και χρόνου – των προβλημάτων που αφορούν στη μελέτη αντιδραστηρίων χημικής απόθεσης από ατμο καθιστά πρακτικά απαραίτητη τη χρήση μεγάλων και καθιερωμένων, ως επί το πλείστον εμπορικών, υπολογιστικών κωδίκων («πακέτων»). Συνήθως, οι επιλύτες των πακέτων αυτών δεν διαθέτουν τη δυνατότητα της διεξοδικής παραμετρικής ανάλυσης, με απότερο μειονέκτημα τον ανεπαρκή προσδιορισμό των παραθύρων λειτουργίας των αντιδραστηρίων. Χαρακτηριστικά, όπως αναφέρθηκε στο κεφάλαιο 4, ο υπολογισμός των ασταθών μόνιμων καταστάσεων λειτουργίας και ο προσδιορισμός των ορίων, στο χόρο των παραμέτρων, μεταξύ ευσταθούς και ασταθούς λειτουργίας απαιτεί την ανάπτυξη «κελύφους» περί του προσομοιωτή του πακέτου, ο οποίος εν τέλει θα διευρύνει τον ιδίο-χωρο (ιδιοτιμές-ιδιοδιανόσματα) των κατάλληλων πινάκων από εκείνους που χρησιμοποιεί ο επιλύτης. Μια ολοκληρωμένη, λοιπόν, συστημική ανάλυση, απαιτεί τη ζεύξη προσομοιωτ/πακέτου με εξωτερικό κώδικα-κέλυφος. Η ζεύξη αυτή επηρεάζεται καθοριστικά από τη μέθοδο διακριτοποίησης των εξισώσεων και ειδικότερα από τον επιλύτη του πακέτου, όπως έχει ήδη αναπτυχθεί στο κεφάλαιο 4. Συνεπώς, ο σχεδιασμός μιας αποδοτικής ζεύξης απαιτεί συστηματική περαιτέρω διερεύνηση των επιλογών που αφορούν στον συνδυασμό μέθοδος διακριτοποίησης-επιλύτης-μέθοδος ανάλυσης ιδίωγων.

Στο ΠΕ3 “Συστημική Ανάλυση - Ανάλυση Βέλτιστης Λειτουργίας” υπάρχει προοπτική επέκταση του προβλήματος ενός στόχου, που μελετήθηκε στα πλαίσια του υποέργου, σε πρόβλημα δύο στόχων. Συγκεκριμένα, θα επιχειρηθεί ο προσδιορισμός των βέλτιστων τιμών των λειτουργικών παραμέτρων του αντιδραστήρα απόθεσης υμενίων οξειδίου του κασσίτερου, υπό συνθήκες δύο αντικρούμενων στόχων, δηλ. ελάχιστη ανομοιομορφία πάχους και μέγιστος ρυθμός ανάπτυξης υμενίων.

Θα πρέπει να τονίσουμε ότι η "ζεύξη" του προσομοιωτή με το λογισμικό βελτιστοποίησης EASY, για τον προσδιορισμό των βέλτιστων τιμών των λειτουργικών παραμέτρων του αντιδραστήρα ΧΑΑ, αποτελεί αντικείμενο του παρόντος υποέργου. Ωστόσο, αναφέρθηκε παραπάνω, η ανάγκη χρήσης του λογισμικού βελτιστοποίησης EASY σε ένα τυπικό πρόβλημα βελτιστοποίησης για το σχεδιασμό του συστήματος κατασκηνωσιμού του αντιδραστήρα ανάπτυξης υμενίων αλουμινίου. Η προοπτική αυτή απαιτεί την κατάλληλη παραμετροποίηση του αντιδραστήρα ώστε να είναι δυνατή η αυτοματοποιημένη τροποποίηση/γένεση του υπολογιστικού πλέγματος στη διαδικασία βελτιστοποίησης.

Επειδή το λογισμικό βελτιστοποίησης EASY απαιτεί ανεξάρτητους μεταξύ τους υπολογισμούς σε διαφορετικές τιμές παραμέτρων (λειτουργικών και γεωμετρικών), είναι προφανές ότι μπορεί να αξιοποιηθεί τη διαθεσιμότητα παράλληλης υπολογιστικής
επεξεργασίας, η οποία, όπως προηγουμένως αναφέρθηκε, είναι απαραίτητη για την
αποδοτική προσομοίωση. Συνεπώς, μια φιλόδοξη κατεύθυνση και επέκταση της παρούσας
έρευνας είναι η ανάπτυξη του ολοκληρωμένου προσομοιωτή διεργασιών Χημικής Απόθεσης
από Ατμό σε περιβάλλον υψηλών υπολογιστικών επιδόσεων και συγκεκριμένα σε συστοιχίες
παράλληλων επεξεργαστών, που είναι εγκατεστημένες και εν λειτουργία στη Σχολή Χημικών
Μηχανικών ΕΜΠ.

Sandia National Laboratories, 2001, CVD Sciences,
http://www.sandia.gov/1100/CVDwww/CVDSci.htm,
http://endo.sandia.gov/DAKOTA/applications/salsa.html

Wigton L.B., Yu N.J. and Young D.P., "GMRES Acceleration of Computational Fluid Dynamics Codes", in Proc. 1985 AIAA Conference, Denver, CO, 1985

ΚΑΤΑΛΟΓΟΣ ΣΥΜΒΟΛΩΝ

Αγγλικά σύμβολα

<table>
<thead>
<tr>
<th>Σύμβολο</th>
<th>Εξήγηση</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>ειδική θερμότητα αερίου [J/(kg·K)]</td>
</tr>
<tr>
<td>d_{1S}</td>
<td>απόσταση πρώτου πλεγματικού σημείου από τη στερεή επιφάνεια</td>
</tr>
<tr>
<td>D_j</td>
<td>δυαδικός συντελεστής διάχυσης [m^2/s]</td>
</tr>
<tr>
<td>D_{i}^{eff}</td>
<td>ενεργός συντελεστής διάχυσης συστατικού i [m^2/s]</td>
</tr>
<tr>
<td>D_{i}^T</td>
<td>ενεργός συντελεστής διάχυσης συστατικού i στην επιφάνεια απόθεσης [m^2/s]</td>
</tr>
<tr>
<td>D_{i}^S</td>
<td>συντελεστής θερμικής διάχυσης συστατικού i [kg/(m·s)]</td>
</tr>
<tr>
<td>g</td>
<td>άνοιγμα επιτάχυνσης της βαρύτητας [m/s^2]</td>
</tr>
<tr>
<td>G</td>
<td>ρυθμός ανάπτυξης στερεού υμενίου πάνω στο υπόστρωμα απόθεσης [λ/мин]</td>
</tr>
<tr>
<td>G_i</td>
<td>αέρια αντιδρώντα και αέρια προϊόντα</td>
</tr>
<tr>
<td>H_i</td>
<td>ενθαλπία σχηματισμού συστατικού i [J/mol]</td>
</tr>
<tr>
<td>I</td>
<td>μοναδιαίος δυαδικός</td>
</tr>
<tr>
<td>j_{i}^T</td>
<td>άνοιγμα θερμικής διάχυσης του συστατικού i [kg/(m^2·s)]</td>
</tr>
<tr>
<td>j_{i}^C</td>
<td>άνοιγμα ροής μάζας του συστατικού i [kg/(m^2·s)]</td>
</tr>
<tr>
<td>k_{ij}</td>
<td>παράγοντας θερμικής διάχυσης</td>
</tr>
<tr>
<td>KS</td>
<td>πλήθος επιφανειακών αντιδράσεων</td>
</tr>
<tr>
<td>M</td>
<td>μοριακό βάρος αερίου μίγματος N-συστατικών [kg/mol]</td>
</tr>
<tr>
<td>M_i</td>
<td>μοριακό βάρος συστατικού i [kg/mol]</td>
</tr>
<tr>
<td>M_s</td>
<td>μοριακό βάρος στερεού υμενίου [kg/mol]</td>
</tr>
<tr>
<td>MF_i</td>
<td>καθαρός ρυθμός παραγωγής ή κατανάλωσης μάζας του συστατικού i στην επιφάνεια απόθεσης [kg/(m^2·s)]</td>
</tr>
<tr>
<td>MF</td>
<td>συνολική καθαρή ροή αέριας μάζας στην επιφάνεια απόθεσης [kg/(m^2·s)]</td>
</tr>
<tr>
<td>n</td>
<td>μοναδιαίο κάθετο διάνυσμα</td>
</tr>
<tr>
<td>N</td>
<td>πλήθος συστατικών του αερίου μίγματος</td>
</tr>
<tr>
<td>NR</td>
<td>πλήθος αντιδρώντων του αερίου μίγματος</td>
</tr>
<tr>
<td>P</td>
<td>πίεση [Pa]</td>
</tr>
<tr>
<td>R</td>
<td>παγκόσμια σταθερά των αερίων [8.31441 J/(mol·K)]</td>
</tr>
<tr>
<td>R_{Di}</td>
<td>μέγιστη ροή διάχυσης συστατικού i, στην επιφάνεια απόθεσης [mol/(m^2·s)]</td>
</tr>
<tr>
<td>R_{g}^k</td>
<td>ρυθμός αντίδρασης k στην αέρια φάση [mol/(m^3·s)]</td>
</tr>
<tr>
<td>R_{s}^k</td>
<td>ρυθμός επιφανειακής αντίδρασης k [mol/(m^2·s)]</td>
</tr>
<tr>
<td>R_{k}^d</td>
<td>ρυθμός απόθεσης που αντιστοιχεί στην επιφανειακή αντίδραση k [mol/(m^2·s)]</td>
</tr>
</tbody>
</table>
\(S_j \) στερεά προϊόντα
\(T \) θερμοκρασία [K]
\(u_s \) συνιστώσα ταχύτητας κάθετη στην επιφάνεια απόθεσης [m/s]
\(u \) άνυσμα ταχύτητας [m/s]
\(x_i \) μοριακό κλάσμα συστατικού \(i \)

Ελληνικά σύμβολα

\(\alpha_{ki} \) πολυωνιμικοί συντελεστές για τον υπολογισμό των θερμοφυσικών ιδιοτήτων του συστατικού \(i \), σχέσεις (2.26, 2.27)
\(\gamma_k \) στοιχειομετρικός συντελεστής αερίου αντιδράντων (ή προϊόντος) \(i \) στην αντίδραση αέριας φάσης \(k \)
\(\Delta G \) ανομοιομορφία του παραγόμενου υμενίου (%)
\(\lambda \) θερμική αγωγιμότητα αερίου [W/(m·K)]
\(\mu \) δυναμικό ιξώδες αερίου [Pa·s = kg/(m·s)]
\(\rho \) πυκνότητα αερίου [kg/m\(^3\)]
\(\rho_s \) πυκνότητα στερεού υμενίου [kg/m\(^3\)]
\(\sigma_i \) παράμετρος Lennard-Jones (η διάμετρος σύγκρουσης) για το συστατικό \(i \) [Å]
\(\sigma_{jk} \) στοιχειομετρικός συντελεστής στερεού προϊόντος \(j \) στην επιφανειακή αντίδραση \(k \)
\(\Phi_{ij} \) παράγοντας συσχέτισης για το ζεύγος των συστατικών \(i-j \)
\(\omega_i \) κλάσμα μάζας συστατικού \(i \)
\(\Omega_{ij} \) αδιάστατη παράμετρος (collision integral) για το συντελεστή διάχυσης για το ζεύγος των συστατικών \(i-j \)
\(\Omega_{p,i} \) αδιάστατη παράμετρος (collision integral) για το δυναμικό ιξώδες \(\mu \) συστατικού \(i \)

Δείκτες

ave μέση τιμή μεγέθους
c κρίσιμη τιμή
\(i,j \) (\(i,j = 1, N \)) συστατικό \(i \) ή \(j \)
inlet είσοδος αντιδραστήρα
\(k \) (\(k = 1, K \) ή \(KS \)) αντίδραση αέριας ή στερεής φάσης
max μέγιστη τιμή μεγέθους
min ελάχιστη τιμή μεγέθους
o τιμή αναφοράς
wafer επιφάνεια υποστρώματος
wall τοίχωμα αντιδραστήρα
l πρώτο πλεγματικό σημείο πάνω από την επιφάνεια απόθεσης
Μαθηματικά και άλλα σύμβολα

∇ ανυσματικός διαφορικός τελεστής Euler

∇u δυαδικός ταχύτητας

(∇u)^T ανάστροφος δυαδικός ταχύτητας
ΠΑΡΑΡΤΗΜΑ

Δημοσιεύσεις